Go to top
Other languages:  

English · Italiano · Français · Deutsch · Español

Vorremmo che il lettore avesse immediata percezione degli argomenti che verranno trattati in Masticationpedia, passando in rassegna alcuni dei temi più attuali che riguardano l'evoluzione epistemologica della Scienza in generale, quella medica ed odontoiatrica in particolare...

Occlusal Centric view in open and cross bite patient.jpg

In questa fase prenderemo in considerazione i due aspetti fondamentali del Progresso della Scienza, secondo i Paradigmi di Kuhn, e la Epistemologia, che mette in discussione (o per lo meno in allerta) i concetti di "Inferenza Statistica" e di "Interdisciplinarità".

Questi due temi, che apparentemente sembrano in conflitto tra loro, in quanto il primo necessita di disciplinarità per evidenziare le "Anomalie nel Paradigma" ed il secondo di "Interdisciplinarità", si integreranno attraverso un elemento risolutore che consiste negli "Scaffold metacognitivi", ponti cognitivi tra discipline specialistiche. Il lettore, dunque, potrà meglio apprezzare, in questo contesto, l'approccio stocastico verso uno dei temi più dibattuti nelle riabilitazioni masticatorie come la "Malocclusione", da cui derivano gran parte delle procedure riabilitative masticatorie come l'ortodonzia, la protesi e la chirurgia ortognatica.

In chiusura, perciò, oltre ad anticipare l'aspetto filosofico scientifico di Masticationpedia, ci soffermeremo su argomenti come i "Sistemi Complessi", il "Comportamento Emergente" dei Sistemi Complessi e la "Coerenza di Sistema": passaggi necessari per introdurre argomenti scientifico clinici che portano con se una serie di dubbi, quesiti e contestualmente innovazioni paradigmatiche tendenti a cambiare lo status quo della routine di pensiero clinico deterministico e riduzionista, a fronte di una logica di linguaggio stocastico ed interdisciplinare.

 

Masticationpedia
Article by  Gianni Frisardi

 

Ab ovo[1]

Prima di entrare nel vivo della trattazione Masticationpedia, è opportuna una premessa, che riguarda principalmente due aspetti della realtà sociale, scientifica e clinica dell'era attuale e dell'era immediatamente precedente.

The phases of paradigm change according to Thomas Kuhn

Nel secolo scorso si è assistito a una crescita esponenziale di "Innovazioni" tecnologiche e metodologiche in particolare in odontoiatria;[2] queste innovazioni hanno in qualche modo influenzato strategie decisionali, opinioni, scuole di pensiero e assiomi al fine di migliorare la qualità della vita, come affermato nella "Scienza dell'esposizione nel 21° secolo".[3] Tuttavia, questa crescita esponenziale porta con sé, implicitamente, aree grigie concettuali (in termini pratici "effetti collaterali") talvolta sottovalutate, ma che possono mettere in discussione alcune Certezze Scientifiche o renderle meno assolute e più probabilistiche.[4] I due aspetti sensibili dell'attuale realtà sociale, scientifica e clinica (che sembrano in conflitto tra loro, ma come vedremo alla fine di questa lettura saranno complementari) sono il "Progresso della scienza" secondo Kuhn e il " Epistemologia".

Progress of Science according to Thomas Kuhn

Thomas Kuhn nella sua opera più famosa afferma che la scienza attraversa ciclicamente alcune fasi indicative del suo funzionamento.[5][6]

Secondo Kuhn, la scienza è paradigmatica e la demarcazione tra scienza e pseudoscienza può essere fatta risalire all'esistenza di un paradigma. L'evoluzione del progresso scientifico è assimilata a una curva continua che subisce discontinuità nei cambiamenti di paradigma.

Da buon risolutore di problemi, lo scienziato cerca di risolvere queste anomalie.

Le fasi di Kuhn in Odontoiatria

Kuhn, invece, divide l'evoluzione di un paradigma in cinque fasi; questo è un processo fondamentale per Masticationpedia, ma per restare sintonizzati con il progetto ci limiteremo a descrivere le tre fasi più significative condivise nel progetto ed indicate nell'indice del libro:

  • Fase 2: ovvero la Scienza Normale

Ad esempio, nella fase 2 dei Paradigmi di Kuhn, chiamata Scienza normale, gli scienziati sono visti come risolutori di problemi, che lavorano per migliorare l'accordo tra il paradigma e la natura. Questa fase, infatti, si basa su un insieme di principi di base dettati dal paradigma, che non vengono messi in discussione ma ai quali, anzi, è affidato il compito di indicare le coordinate dei lavori a venire. In questa fase vengono sviluppati gli strumenti di misura con cui vengono realizzati gli esperimenti, viene prodotta la maggior parte degli articoli scientifici ei suoi risultati costituiscono una crescita significativa della conoscenza scientifica. Nella normale fase scientifica saranno raggiunti sia i successi che i fallimenti; i fallimenti sono chiamati da anomalie di Kuhn, o eventi che vanno contro il paradigma.

 
  • Fase 4, ovvero la Crisi del paradigma

In conseguenza della crisi, in questo periodo verranno creati diversi paradigmi. Questi nuovi paradigmi, quindi, non nasceranno dai risultati raggiunti dalla teoria precedente, ma piuttosto dall'abbandono degli schemi prestabiliti del paradigma dominante. Seguendo questo percorso, in Masticationpedia, si parlerà della crisi del paradigma riabilitativo masticatorio rivedendo teorie, teoremi, assiomi, scuole di pensiero e criteri diagnostici di ricerca e poi il focus si sposterà sulla fase 5.

 
  • Fase 5, o Rivoluzione Scientifica

La fase 5 riguarda la rivoluzione (scientifica). Nel periodo delle attività scientifiche straordinarie si aprirà un confronto all'interno della comunità scientifica su quale nuovo paradigma accettare. Ma non sarà necessariamente il paradigma più "vero" o più efficiente ad emergere, ma quello che sarà in grado di catturare l'interesse di un numero sufficiente di scienziati e di conquistare la fiducia della comunità scientifica. I paradigmi che partecipano a questo scontro, secondo Kuhn, non condividono nulla, nemmeno le basi e, quindi, non sono comparabili (sono “incommensurabili”). Il paradigma viene scelto, come detto, su basi socio-psicologiche o biologiche (i giovani scienziati sostituiscono i più anziani). La battaglia tra paradigmi risolverà la crisi, verrà nominato il nuovo paradigma e la scienza tornerà alla Fase 1. Per lo stesso principio della Fase 4, Masticationpedia proporrà, nel capitolo intitolato Scienze straordinarie, un nuovo modello paradigmatico nel campo della riabilitazione del Sistema Masticatorio discutendone principi, motivazioni, esperienze cliniche scientifiche e, soprattutto, un cambiamento radicale nel campo della diagnostica medica. Questa modifica si basa essenzialmente su 'Inferenza di Sistema', piuttosto che su Symptom Inference, dando principalmente valore assoluto all'obiettività dei dati.

È quasi ovvio che la filosofia scientifica kuhniana preferisce la disciplina, poiché un'anomalia nel paradigma genomico sarà notata meglio da un genetista che da un neurofisiologo. Ora questo concetto sembrerebbe in contrasto con l'evoluzione epistemologica della Scienza, quindi è meglio soffermarci un minuto su di esso in dettaglio.

Epistemologia

Il cigno nero simboleggia uno dei problemi storici dell'epistemologia: se tutti i cigni che abbiamo visto finora sono bianchi, possiamo decidere che tutti i cigni sono bianchi?Davvero?
Black Swan (Cygnus atratus) RWD.jpg
 
Duck-Rabbit illusion.jpg
Kuhn ha usato l'illusione ottica per dimostrare come un cambio di paradigma possa indurre una persona a vedere le stesse informazioni in un modo completamente diverso: quale animale è quello qui a parte?Sicuro?


L'epistemologia (dal greco ἐπιστήμη, epistème, "certa conoscenza" o "scienza", e λόγος, logos, "discorso") è quella branca della filosofia che si occupa delle condizioni in cui si può ottenere la conoscenza scientifica e dei metodi per raggiungerla conoscenza.[7] Il termine indica specificamente quella parte della gnoseologia che studia i fondamenti, la validità ei limiti della conoscenza scientifica. Nei paesi di lingua inglese, il concetto di epistemologia è invece utilizzato principalmente come sinonimo di gnoseologia o teoria della conoscenza, la disciplina che si occupa dello studio della conoscenza.

Per inciso, il problema fondamentale dell'epistemologia oggi, come ai tempi di Hume, rimane quello della verificabilità.[8][9]

Il paradosso di Hempel ci dice che ogni cigno bianco[10] avvistato conferma che i corvi sono neri; cioè ogni esempio non in contrasto con la teoria ne conferma una parte

Secondo l'obiezione di falsificabilità, invece, nessuna teoria è mai vera perché, mentre ci sono solo un numero finito di esperimenti a favore, esiste anche teoricamente un numero infinito che potrebbe falsificarla.[11]

Ma non è tutto così ovvio...

...perché il concetto stesso di epistemologia incontra continue implementazioni, come in medicina:

  • :
    In medicina, ad esempio, per confermare un esperimento, una serie di dati provenienti da strumenti di laboratorio o da rilievi, si usa l'“Inferenza Statistica”, ed in particolare un famoso valore chiamato “test di significatività” (P-value). Ebbene, anche questo concetto, ormai parte della genesi del ricercatore, vacilla. In un recente studio l'attenzione si è concentrata su una “Campagna” condotta sulla “Natura” contro il concetto di “test di significatività”.[12]Con oltre 800 firmatari che supportano importanti scienziati, questa "campagna" può essere considerata un'importante pietra miliare e una "Rivoluzione silenziosa" nella statistica sugli aspetti logici ed epistemologici.[13][14][15] La campagna critica le analisi statistiche troppo semplificate che si possono ancora trovare in molte pubblicazioni fino ad oggi. Ciò alla fine ha portato a una discussione, sponsorizzata dall'American Statistical Association, che ha generato un numero speciale di "The American Statistician Association" intitolato "Statistical Inference in the 21st Century: A World Beyond p <0,05", contenente 43 articoli di forward -guardando gli statistici.[16] La domanda speciale propone sia nuovi modi per segnalare l'importanza dei risultati della ricerca oltre la soglia arbitraria di un valore P, sia alcune guide per condurre la ricerca: il ricercatore dovrebbe accettare l'incertezza, essere riflessivo, aperto e modesto nelle sue affermazioni.[16] Il futuro mostrerà se quei tentativi di supportare statisticamente meglio la scienza oltre i test di significatività si rifletteranno o meno nelle pubblicazioni future.[17] Anche in questo campo siamo sulla stessa lunghezza d'onda del Progresso della scienza secondo Kuhn, in quanto si tratta della rimodulazione di alcuni contenuti statistici descrittivi nell'ambito della disciplina.
  • Interdisciplinarità:
    Nella politica scientifica, è generalmente riconosciuto che la risoluzione dei problemi basata sulla scienza richiede ricerca interdisciplinare (IDR), come proposto dal progetto dell'UE denominato Horizon 2020.[18] In un recente studio, gli autori si concentrano sulla domanda perché i ricercatori hanno difficoltà cognitive ed epistemiche nella condurre IDR. Si ritiene che la perdita di interesse filosofico per l'epistemologia della ricerca interdisciplinare sia dovuta a un paradigma filosofico della scienza chiamato "Physics Paradigm of Science", che impedisce il riconoscimento di importanti cambiamenti IDR sia nella filosofia della scienza che nella ricerca. Il paradigma filosofico alternativo proposto, chiamato "Paradigma ingegneristico della scienza", fa ipotesi filosofiche alternative su aspetti quali lo scopo della scienza, il carattere della conoscenza, i criteri epistemici e pragmatici per l'accettazione della conoscenza e il ruolo degli strumenti tecnologici. Di conseguenza, i ricercatori scientifici hanno bisogno dei cosiddetti scaffold metacognitivi per assisterli nell'analisi e nella ricostruzione di come la "conoscenza" è costruita nelle diverse discipline. Nella ricerca interdisciplinare, gli scaffold metacognitivi aiutano la comunicazione interdisciplinare ad analizzare e articolare il modo in cui la disciplina costruisce la conoscenza.[19][20]


Bibliography & references
  1. Latin for "since the very beginning"
  2. Heft MW, Fox CH, Duncan RP, «Assessing the Translation of Research and Innovation into Dental Practice», in JDR Clin Trans Res, 2019».
    DOI:10.1177/2380084419879391 
  3. «Exposure Science in the 21st Century. A Vision and a Strategy», Committee on Human and Environmental Exposure Science in the 21st Century; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council.».
    ISBN: 0-309-26468-5 
  4. Liu L, Li Y, «The unexpected side effects and safety of therapeutic monoclonal antibodies», in Drugs Today, 2014, Barcellona».
    DOI:10.1358/dot.2014.50.1.2076506 
  5. Thomas Samuel Kuhn (Cincinnati, 18 july 1922 – Cambridge, 17 june 1996) was an American philosopher of science.
    See Treccani, Kuhn, Thomas Samuel. Wikipedia, Thomas Kuhn.
  6. Kuhn Thomas S, «The Structure of Scientific Revolutions», Univ. of Chicago Press, 2012, Chicago».
    ISBN: 9780226458113 
  7. The term is believed to have been coined by the Scottish philosopher James Frederick Ferrier in his Institutes of Metaphysic (p.46), of 1854; see Internet Encyclopedia of Philosophy, James Frederick Ferrier (1808—1864). Wikipedia
  8. David Hume (Edimburgh, 7 may 1711 – Edimburgh, 25 august 1776) was a Scottish philosopher. He is considered the third and perhaps the most radical of the British Empiricists, after the Englishman John Locke and the Anglo-Irish George Berkeley.
  9. Srivastava S, «Verifiability is a core principle of science», in Behav Brain Sci, Cambridge University Press, 2018, Cambridge».
    DOI:10.1017/S0140525X18000869 
  10. Here we obviously refer to the well-known paradox called "of the crows", or "of the black crows", formulated by the philosopher and mathematician Carl Gustav Hempel, better explained in Wikipedia's article Raven paradox:
    See Good IJ, «The Paradox of Confirmation», in Br J Philos Sci, 1960 – in «Vol. 11». 
  11. Evans M, «Measuring statistical evidence using relative belief», in Comput Struct Biotechnol J, 2016».
    DOI:10.1016/j.csbj.2015.12.001 
  12. Amrhein V, Greenland S, McShane B, «Scientists rise up against statistical significance», in Nature, 2019».
    DOI:10.1038/d41586-019-00857-9 
  13. Rodgers JL, «The epistemology of mathematical and statistical modeling: a quiet methodological revolution», in Am Psychol, 2010».
    DOI:10.1037/a0018326 
  14. Meehl P, «The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions», 1997». , in eds Harlow L. L., Mulaik S. A., Steiger J. H., What If There Were No Significance Tests? - editors. (Mahwah: Erlbaum, 393–425. [Google Scholar]
  15. Sprenger J, Hartmann S, «Bayesian Philosophy of Science. Variations on a Theme by the Reverend Thomas Bayes», Oxford University Press, 2019, Oxford». 
  16. 16.0 16.1 Wasserstein RL, Schirm AL, Lazar NA, «Moving to a World Beyond p < 0.05», in Am Stat, 2019».
    DOI:10.1080/00031305.2019.1583913 
  17. Dettweiler Ulrich, «The Rationality of Science and the Inevitability of Defining Prior Beliefs in Empirical Research», in Front Psychol, 2019».
    DOI:10.3389/fpsyg.2019.01866 
  18. European Union, Horizon 2020
  19. Boon M, Van Baalen S, «Epistemology for interdisciplinary research - shifting philosophical paradigms of science», in Eur J Philos Sci, 2019».
    DOI:10.1007/s13194-018-0242-4 
  20. Boon M, «An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool», in Prog Biophys Mol Biol, 2017».
    DOI:10.1016/j.pbiomolbio.2017.04.001 
Wiki.png

 

|}