Store:Khrennikov08

Revision as of 16:10, 24 September 2022 by Gianfranco (talk | contribs) (Created page with "===3.4. General theory (Davies–Lewis–Ozawa)=== Finally, we formulate the general notion of quantum instrument. A superoperator acting in <math display="inline">\mathcal{L}(\mathcal{H})</math> is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each '''<u><math>x,\Im_A(x)</math></u>'''  given by (13) can be considered as linear positive map. Generally any map<math>x\rightarrow\Im_A(x)</math> , where for each <m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

3.4. General theory (Davies–Lewis–Ozawa)

Finally, we formulate the general notion of quantum instrument. A superoperator acting in is called positive if it maps the set of positive semi-definite operators into itself. We remark that, for each  given by (13) can be considered as linear positive map.

Generally any map , where for each , the map  is a positive superoperator is called Davies–Lewis (Davies and Lewis, 1970) quantum instrument.

Here index   denotes the observable coupled to this instrument. The probabilities of -outcomes are given by Born’s rule in form (15) and the state-update by transformation (14). However, Yuen (1987) pointed out that the class of Davies–Lewis instruments is too general to exclude physically non-realizable instruments. Ozawa (1984) introduced the important additional condition to ensure that every quantum instrument is physically realizable. This is the condition of complete positivity.

A superoperator is called completely positive if its natural extension  to the tensor product   is again a positive superoperator on . A map , where for each , the map  is a completely positive superoperator is called Davies–Lewis–Ozawa (Davies and Lewis, 1970, Ozawa, 1984) quantum instrument or simply quantum instrument. As we shall see in Section 4, complete positivity is a sufficient condition for an instrument to be physically realizable. On the other hand, necessity is derived as follows (Ozawa, 2004).

Every observable   of a system is identified with the observable  of a system  with any system external to .10

Then, every physically realizable instrument   measuring should be identified with the instrument   measuring  such that . This implies that  is agin a positive superoperator, so that  is completely positive.

Similarly, any physically realizable instrument  measuring system  should have its extended instrument   measuring system  for any external system. This is fulfilled only if   is completely positive. Thus, complete positivity is a necessary condition for  to describe a physically realizable instrument.