Go to top

Conjunto difuso y función de pertenencia

Elegimos, como formalismo, representar un conjunto borroso con la 'tilde': Un conjunto borroso es un conjunto donde los elementos tienen un 'grado' de pertenencia (de acuerdo con la lógica borrosa): algunos pueden incluirse en el conjunto en 100%, otros en porcentajes menores.

Para representar matemáticamente este grado de pertenencia se encuentra la función denominada 'Función de pertenencia'. La función es una función continua definida en el intervalo donde es:

  • si está totalmente contenido en (estos puntos se llaman 'núcleo', indican valores predicados plausibles).
  • si no está contenido en
  • si está parcialmente contenido en (estos puntos se llaman 'soporte', indican los posibles valores predicados).

La representación gráfica de la función puede ser variado; desde los de líneas lineales (triangulares, trapezoidales) hasta los que tienen forma de campana o 'S' (sigmoidales) como se muestra en la Figura 1, que contiene todo el concepto gráfico de la función de pertenencia....[1][2]

Figure 1: Types of graphs for the membership function.

.[3]

Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic:

Figure 2: Representation of the comparison between a classical and fuzzy ensemble.

Figure 2: Let us imagine the Science Universe in which there are two parallel worlds or contexts, and .

In the scientific context, the so-called ‘crisp’, and we have converted into the logic of Classic Language, in which the physician has an absolute scientific background information with a clear dividing line that we have named .

In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset in that we can go so far as to say: union between .

We will remarkably notice the following deductions:

  • Classical Logic in the Dental Context in which only a logical process that gives as results will be possible, or being the range of data reduced to basic knowledge in the set . This means that outside the dental world there is a void and that term of set theory is written precisely and which is synonymous with a high range of:
«Differential diagnostic error»
  • Fuzzy logic in a dental context in which they are represented beyond the basic knowledge of the dental context also those partially acquired from the neurophysiological world will have the prerogative to return a result and a result because of basic knowledge which at this point is represented by the union of dental and neurological contexts. The result of this scientific-clinical implementation of dentistry would allow a
    «Reduction of differential diagnostic error»
  1. Zhang W, Yang J, Fang Y, Chen H, Mao Y, Kumar M, «Analytical fuzzy approach to biological data analysis», in Saudi J Biol Sci, 2017».
    PMID:28386181 - PMCID:PMC5372457
    DOI:10.1016/j.sjbs.2017.01.027 
  2. Lazar P, Jayapathy R, Torrents-Barrena J, Mol B, Mohanalin, Puig D, «Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease», in Healthc Technol Lett, The Institution of Engineering and Technology, 2016».
    PMID:30800318 - PMCID:PMC6371778
    DOI:10.1049/htl.2016.0022 
  3. •SMUTS J.C. 1926, Holism and Evolution, London: Macmillan.