Store:FLen04

Revision as of 14:51, 19 October 2022 by Gianfranco (talk | contribs) (Created page with "===<!--70-->Set operators=== <!--71-->Given the whole universe <math>U</math> <!--72-->we indicate with <math>x</math> <!--73-->its generic element so that <math>x \in U</math>; <!--74-->then, we consider two subsets <math>A</math> and <math>B</math> <!--75-->internal to <math>U</math> <!--76-->so that <math>A \subset U</math> <!--77-->and <math>B \subset U</math> {| |left|80px |'''<!--78-->Union:''' <!--79-->represented by the symbol <math>\cup</m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

Set operators

Given the whole universe we indicate with its generic element so that ; then, we consider two subsets and internal to so that and

Venn0111.svg
Union: represented by the symbol , indicates the union of the two sets and . It is defined by all the elements that belong to and or both:

sinistra Intersection: represented by the symbol , indicates the elements belonging to both sets:

Venn0010.svg
Difference: represented by the symbol , for example shows all elements of except those shared with
Venn1000.svg
Complementary: represented by a bar above the name of the collection, it indicates by the complementary of , that is, the set of elements that belong to the whole universe except those of , in formulas:

The theory of fuzzy language logic is an extension of the classical theory of sets in which, however, the principles of non-contradiction and the excluded third are not valid. Remember that in classical logic, given the set and its complementary , the principle of non-contradiction states that if an element belongs to the whole it cannot at the same time also belong to its complementary ; according to the principle of the excluded third, however, the union of a whole and its complementary constitutes the complete universe .

In other words, if any element does not belong to the whole, it must necessarily belong to its complementary.