Store:QLMit15

Revision as of 12:07, 11 April 2023 by Gianni (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

8.3. Processo delle funzioni biologiche attraverso la decoerenza

Per rendere concrete le precedenti considerazioni, consideriamo uno stato quantistico puro come stato iniziale. Supponiamo che una funzione biologica sia dicotomica, , ed è rappresentata simbolicamente dall'operatore Hermitiano diagonale in base ortonormale ,. (Consideriamo lo spazio degli stati bidimensionale, lo spazio dei qubit.) Supponiamo che lo stato iniziale abbia la forma della sovrapposizione

 

dove . La dinamica master quantistica non è una dinamica di stato puro: prima o poi (anzi, molto presto), questa sovrapposizione che rappresenta uno stato puro sarà trasferita in una matrice di densità che rappresenta uno stato misto. Pertanto, fin dall'inizio è utile rappresentare la sovrapposizione (28) in termini di una matrice di densità:

 

La purezza dello stato, la sovrapposizione, è caratterizzata dalla presenza di termini fuori diagonale diversi da zero. La sovrapposizione codifica l'incertezza rispetto alla base dello stato concreto, nel nostro caso ,. Inizialmente la funzione biologica era nello stato di incertezza tra due scelte . Questa è una genuina incertezza quantistica. Incertezza, su possibili azioni in futuro. Ad esempio, per la funzione psicologica (Sezione 10) che rappresenta la risposta a qualche domanda, diciamo "comprare una proprietà" () e la sua negazione (), una persona il cui stato è descritto dalla sovrapposizione (28) è incerta ad agire con ()  o con (). Pertanto, uno stato di tipo sovrapposizione descrive la incertezza individuale, cioè l'incertezza associata al singolo biosistema e non a un insieme di biosistemi; con l'unico atto di funzionamento di e non con una grande serie di tali atti.

La risoluzione dell'incertezza rispetto a qubit è caratterizzata dal lavaggio dei termini fuori diagonale in (29) La dinamica quantistica (24) sopprime i termini fuori diagonale e, infine, una matrice di densità diagonale che rappresenta uno stato stazionario di questi sistemi dinamici è generato:

 

Questa è una classica miscela statistica. Descrive un insieme di biosistemi; statisticamente generano output con probabilità . Allo stesso modo, l'interpretazione statistica può essere utilizzata per un singolo sistema che esegue il funzionamento in diverse istanze temporali (per una lunga serie temporale).

Nella fisica quantistica, il processo di lavaggio degli elementi fuori diagonale in una matrice di densità è noto come processo di decoerenza. Pertanto, il modello descritto può essere chiamato operazione della funzione biologica attraverso la decoerenza.

8.4. Linearità della rappresentazione quantistica: accelerazione esponenziale per il funzionamento biologico

La modellazione quantistica non afferma che i biosistemi siano fondamentalmente quantistici. Un'immagine più naturale è che sono sistemi biofisici classici complessi e il modello di tipo quantistico fornisce la rappresentazione delle informazioni dei processi biofisici classici, nei geni, nelle proteine, nelle cellule, nel cervello. Uno dei vantaggi di questa rappresentazione è la sua linearità. Lo spazio degli stati quantistici è uno spazio di Hilbert complesso e le equazioni dinamiche sono equazioni differenziali lineari. Per spazi di stato a dimensione finita, queste sono solo equazioni differenziali ordinarie con coefficienti complessi (quindi, il lettore non dovrebbe aver paura di nomi patetici come equazioni di Schrödinger, von Neumann o Gorini-Kossakowski-Sudarshan-Lindblad). La dinamica biofisica classica al di là della rappresentazione dell'informazione quantistica è tipicamente non lineare e molto complicata. L'uso della rappresentazione dello spazio lineare semplifica la struttura di elaborazione. Ci sono due punti di vista su questa semplificazione, esterno e interno. Il primo è la semplificazione della modellazione matematica, cioè la semplificazione dello studio dei bioprocessi (da parte nostra, osservatori esterni). La seconda è più delicata e interessante. Abbiamo già indicato un'importante specialità delle applicazioni della teoria quantistica alla biologia. Qui, i sistemi possono eseguire auto-osservazioni. Quindi, nel processo di evoluzione diciamo che una cellula può "imparare" tramite tali auto-osservazioni che è computazionalmente vantaggioso utilizzare la rappresentazione lineare di tipo quantistico. E ora arriviamo al vantaggio principale della linearità.

La dinamica lineare accelera esponenzialmente l'elaborazione delle informazioni. Le soluzioni dell'equazione GKSL possono essere rappresentate nella forma , dove è il superoperatore dato dal lato destro dell'equazione di GKSL. Nel caso di dimensione finita, la dinamica di decoerenza è espressa tramite fattori della forma dove . Tali fattori sono esponenzialmente decrescenti. La realizzazione lineare di tipo quantistico delle funzioni biologiche è esponenzialmente rapida rispetto alle dinamiche classiche non lineari.

L'uso della rappresentazione dell'informazione quantistica significa che generalmente grandi gruppi di stati biofisici classici sono codificati da pochi stati quantistici. Significa un'enorme compressione delle informazioni. Implica anche un aumento della stabilità nell'elaborazione dello stato. La rumorosa dinamica classica non lineare è mappata su dinamiche guidate da un'equazione quantistica (simile) lineare di tipo GKSL.

Quest'ultimo ha una struttura essenzialmente più semplice e tramite la selezione dei coefficienti dell'operatore che codificano simbolicamente l'interazione all'interno del sistema e con l'ambiente circostante , può stabilire dinamiche con regimi di stabilizzazione che portano a stati stazionari.