Go to top

8. Open quantum systems: interaction of a biosystem with its environment

As was already emphasized, any biosystem  is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment . The states of   and are represented in the Hilbert spaces  and . The compound system  is represented in the tensor product Hilbert spaces . This system is treated as an isolated system and in accordance with quantum theory, dynamics of its pure state can be described by the Schrödinger equation:

 

where  is the pure state of the system  and  is its Hamiltonian. This equation implies that the pure state  evolves unitarily :. Here . Hamiltonian (evolution-generator) describing information interactions has the form , where  ,are Hamiltonians of the systems and  is the interaction Hamiltonian.12 This equation implies that evolution of the density operator  of the system  is described by von Neumann equation:

 

However, the state   is too complex for any mathematical analysis: the environment includes too many degrees of freedom. Therefore, we are interested only the state of ; its dynamics is obtained via tracing of the state of   w.r.t. the degrees of freedom of  :

 

Generally this equation, the quantum master equation, is mathematically very complicated. A variety of approximations is used in applications.

8.1. Quantum Markov model: Gorini–Kossakowski–Sudarshan–Lindbladequation

The simplest approximation of quantum master equation (23) is the quantum Markov dynamics given by the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation (Ingarden et al., 1997)[1] (in physics, it is commonly called simply the Lindblad equation; this is the simplest quantum master equation):

 

where Hermitian operator (Hamiltonian)  describes the internal dynamics of  and the superoperator , acting in the space of density operators, describes an interaction with environment . This superoperator is often called Lindbladian. The GKSL-equation is a quantum master equation for Markovian dynamics. In this paper, we have no possibility to explain the notion of quantum Markovianity in more detail. Quantum master equation (23) describes generally non-Markovean dynamics.


  1. Ingarden R.S., Kossakowski A., OhyaM. Information Dynamics and Open Systems: Classical and Quantum Approach Kluwer, Dordrecht (1997