Difference between revisions of "Store:QLMfr01"

(Created page with "== Abstract == We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state a...")
 
 
Line 1: Line 1:
== Abstract ==
== Abstrait ==
We present the novel approach to mathematical modeling of information processes in biosystems. It explores the mathematical formalism and methodology of quantum theory, especially quantum measurement theory. This approach is known as ''quantum-like'' and it should be distinguished from study of genuine quantum physical processes in biosystems (quantum biophysics, quantum cognition). It is based on quantum information representation of biosystem’s state and modeling its dynamics in the framework of theory of open quantum systems. This paper starts with the non-physicist friendly presentation of quantum measurement theory, from the original von Neumann formulation to modern theory of quantum instruments. Then, latter is applied to model combinations of cognitive effects and gene regulation of glucose/lactose metabolism in Escherichia coli bacterium. The most general construction of quantum instruments is based on the scheme of indirect measurement, in that measurement apparatus plays the role of the environment for a biosystem. The biological essence of this scheme is illustrated by quantum formalization of Helmholtz sensation–perception theory. Then we move to open systems dynamics and consider quantum master equation, with concentrating on quantum Markov processes. In this framework, we model functioning of biological functions such as psychological functions and epigenetic mutation.
Nous présentons la nouvelle approche de la modélisation mathématique des processus d'information dans les biosystèmes. Il explore le formalisme mathématique et la méthodologie de la théorie quantique, en particulier la théorie de la mesure quantique. Cette approche est dite de type quantique et doit être distinguée de l'étude des véritables processus physiques quantiques dans les biosystèmes (biophysique quantique, cognition quantique). Il est basé sur la représentation de l'information quantique de l'état du biosystème et la modélisation de sa dynamique dans le cadre de la théorie des systèmes quantiques ouverts. Cet article commence par une présentation conviviale pour les non-physiciens de la théorie de la mesure quantique, de la formulation originale de von Neumann à la théorie moderne des instruments quantiques. Ensuite, ce dernier est appliqué à des modèles de combinaisons d'effets cognitifs et de régulation génique du métabolisme du glucose/lactose chez la bactérie Escherichia coli. La construction la plus générale des instruments quantiques est basée sur le schéma de la mesure indirecte, en ce sens que l'appareil de mesure joue le rôle d'environnement pour un biosystème. L'essence biologique de ce schéma est illustrée par la formalisation quantique de la théorie sensation-perception de Helmholtz. Ensuite, nous passons à la dynamique des systèmes ouverts et considérons l'équation maîtresse quantique, en nous concentrant sur les processus quantiques de Markov. Dans ce cadre, nous modélisons le fonctionnement des fonctions biologiques telles que les fonctions psychologiques et la mutation épigénétique.


===== Keywords =====
===== Keywords =====
Mathematical formalism of quantum mechanics, Open quantum systems, Quantum instruments, Quantum Markov dynamics, Gene regulation, Psychological effects,Cognition, Epigenetic mutation, Biological functions
Mathematical formalism of quantum mechanics, Open quantum systems, Quantum instruments, Quantum Markov dynamics, Gene regulation, Psychological effects,Cognition, Epigenetic mutation, Biological functions

Latest revision as of 18:46, 8 April 2023

Abstrait

Nous présentons la nouvelle approche de la modélisation mathématique des processus d'information dans les biosystèmes. Il explore le formalisme mathématique et la méthodologie de la théorie quantique, en particulier la théorie de la mesure quantique. Cette approche est dite de type quantique et doit être distinguée de l'étude des véritables processus physiques quantiques dans les biosystèmes (biophysique quantique, cognition quantique). Il est basé sur la représentation de l'information quantique de l'état du biosystème et la modélisation de sa dynamique dans le cadre de la théorie des systèmes quantiques ouverts. Cet article commence par une présentation conviviale pour les non-physiciens de la théorie de la mesure quantique, de la formulation originale de von Neumann à la théorie moderne des instruments quantiques. Ensuite, ce dernier est appliqué à des modèles de combinaisons d'effets cognitifs et de régulation génique du métabolisme du glucose/lactose chez la bactérie Escherichia coli. La construction la plus générale des instruments quantiques est basée sur le schéma de la mesure indirecte, en ce sens que l'appareil de mesure joue le rôle d'environnement pour un biosystème. L'essence biologique de ce schéma est illustrée par la formalisation quantique de la théorie sensation-perception de Helmholtz. Ensuite, nous passons à la dynamique des systèmes ouverts et considérons l'équation maîtresse quantique, en nous concentrant sur les processus quantiques de Markov. Dans ce cadre, nous modélisons le fonctionnement des fonctions biologiques telles que les fonctions psychologiques et la mutation épigénétique.

Keywords

Mathematical formalism of quantum mechanics, Open quantum systems, Quantum instruments, Quantum Markov dynamics, Gene regulation, Psychological effects,Cognition, Epigenetic mutation, Biological functions