Difference between revisions of "Store:QLMit13"

(Created page with "==8. Open quantum systems: interaction of a biosystem with its environment== As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math> \varepsilon</math>. The states of  <math>S</math> and <math> \varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</...")
 
 
Line 1: Line 1:
==8. Open quantum systems: interaction of a biosystem with its environment==
==8. Sistemi quantistici aperti: interazione di un biosistema con il suo ambiente==
As was already emphasized, any biosystem <math>S</math> is fundamentally open. Hence, dynamics of its state has to be modeled via an interaction with surrounding environment <math>
Come già sottolineato, qualsiasi biosistema <math>S</math> è fondamentalmente aperto. Pertanto, la dinamica del suo stato deve essere modellata tramite un'interazione con l'ambiente circostante <math>
\varepsilon</math>. The states of  <math>S</math> and <math>
\varepsilon</math>. Gli stati di <math>S</math> e <math>
\varepsilon</math> are represented in the Hilbert spaces <math>\mathcal{H}</math> and <math>\mathcal{H}</math>. The compound system <math>S+\varepsilon</math> is represented in the tensor product Hilbert spaces . This system is treated as an isolated system and in accordance with quantum theory, dynamics of its pure state can be described by the Schrödinger equation:  
\varepsilon</math> sono rappresentati negli spazi di Hilbert <math>\mathcal{H}</math> e <math>\mathcal{H}'</math>. Il sistema composto <math>S+\varepsilon</math> è rappresentato negli spazi di Hilbert del prodotto tensoriale <math>\mathcal{H}\otimes\mathcal{H'}
 
</math>. Questo sistema è trattato come un sistema isolato e in accordo con la teoria quantistica, la dinamica del suo stato puro può essere descritta dall'equazione di Schrödinger:  


{| width="80%" |
{| width="80%" |
Line 11: Line 13:
|}
|}


where <math>\psi(t)</math> is the pure state of the system <math>S+\varepsilon</math> and <math>\hat{\mathcal{H}}</math> is its Hamiltonian. This equation implies that the pure state <math>\psi(t)</math> evolves unitarily :<math>\psi(t)=\hat{U}(t)\psi_0</math>. Here <math>\hat{U}(t)=e^{-it\hat{\mathcal{H}}}</math>. Hamiltonian (evolution-generator) describing information interactions has the form <math>\hat{\mathcal{H}}=\hat{\mathcal{H}}_s+\hat{\mathcal{H}}_\varepsilon+{\mathcal{\hat H_{S,\varepsilon}}}</math>, where  <math>\hat{\mathcal{H}}_s</math>,<math>\hat{\mathcal{H}}_\varepsilon</math>are Hamiltonians of the systems and  <math>{\mathcal{\hat H_{S,\varepsilon}}}</math>is the interaction Hamiltonian.12 This equation implies that evolution of the density operator <math>\hat{\mathcal{R}}(t)</math> of the system <math>S+\varepsilon</math> is described by von Neumann equation:  
dove <math>\psi(t)</math> è lo stato puro del sistema <math>S+\varepsilon</math> e <math>\hat{\mathcal{H}}</math> è il suo Hamiltoniano. Questa equazione implica che lo stato puro <math>\psi(t)</math> evolva unitariamente <math>\psi(t)=\hat{U}(t)\psi_0</math>.Qui <math>\hat{U}(t)=e^{-it\hat{\mathcal{H}}}</math>. L'hamiltoniano (generatore di evoluzione) che descrive le interazioni informative ha la forma <math>\hat{\mathcal{H}}=\hat{\mathcal{H}}_s+\hat{\mathcal{H}}_\varepsilon+{\mathcal{\hat H_{S,\varepsilon}}}</math>, dove  <math>\hat{\mathcal{H}}_s</math>, <math>\hat{\mathcal{H}}_\varepsilon</math> sono Hamiltoniani dei sistemi e  <math>{\mathcal{\hat H_{S,\varepsilon}}}</math> è l'Hamiltoniana di interazione.12 Questa equazione implica che l'evoluzione dell'operatore di densità <math>\hat{\mathcal{R}}(t)</math> del sistema <math>S+\varepsilon</math> è descritta dall'equazione di von Neumann:  


{| width="80%" |
{| width="80%" |
Line 20: Line 22:
|}
|}


However, the state  <math>\hat{\mathcal{R}}(t)</math> is too complex for any mathematical analysis: the environment includes too many degrees of freedom. Therefore, we are interested only the state of <math>S</math>; its dynamics is obtained via tracing of the state of  <math>S+\varepsilon</math> w.r.t. the degrees of freedom of <math>\varepsilon</math> :
uttavia, lo stato  <math>\hat{\mathcal{R}}(t)</math> è troppo complesso per qualsiasi analisi matematica: l'ambiente include troppi gradi di libertà. Pertanto, ci interessa solo lo stato di <math>S</math>; la sua dinamica è ottenuta tramite il tracciamento dello stato di  <math>S+\varepsilon</math> w.r.t. ed i gradi di libertà di <math>\varepsilon</math>:


{| width="80%" |
{| width="80%" |
Line 29: Line 31:
|}
|}


Generally this equation, ''the quantum master equation'', is mathematically very complicated. A variety of approximations is used in applications.
Generalmente questa equazione, la '<nowiki/>''equazione quantistica principale''', è matematicamente molto complicata. Nelle applicazioni viene utilizzata una varietà di approssimazioni.


===8.1. Quantum Markov model: Gorini–Kossakowski–Sudarshan–Lindbladequation===
===8.1. Modello quantistico di Markov: equazione di Gorini–Kossakowski–Sudarshan–Lindblade===
The simplest approximation of quantum master equation (23) is ''the quantum Markov dynamics'' given by the ''Gorini–Kossakowski–Sudarshan–Lindblad'' (GKSL) equation (Ingarden et al., 1997) (in physics, it is commonly called simply the Lindblad equation; this is the simplest quantum master equation):  
L'approssimazione più semplice dell'equazione master quantistica (23) è la d''inamica quantistica di Markov'' data dall'equazione Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) (Ingarden et al., 1997)<ref>Ingarden R.S., Kossakowski A., Ohya M.
 
Information Dynamics and Open Systems: Classical and Quantum Approach Kluwer, Dordrecht (1997)</ref> (in fisica, è comunemente chiamata semplicemente equazione di Lindblad; questa è l'equazione master quantistica più semplice):  


{| width="80%" |
{| width="80%" |
Line 41: Line 45:
|}
|}


where Hermitian operator (Hamiltonian) <math>\widehat{\mathcal{H}}</math> describes the internal dynamics of <math>S</math> and the superoperator <math>\widehat{{L}}</math>, acting in the space of density operators, describes an interaction with environment <math>\varepsilon</math>. This superoperator is often called ''Lindbladian.'' The GKSL-equation is a quantum master equation for Markovian dynamics. In this paper, we have no possibility to explain the notion of quantum Markovianity in more detail. Quantum master equation (23) describes generally non-Markovean dynamics.
dove l'operatore hermitiano (Hamiltoniano) <math>\widehat{\mathcal{H}}</math> descrive la dinamica interna di <math>S</math> e il superoperatore <math>\widehat{{L}}</math>, agendo nello spazio degli operatori di densità, descrive un'interazione con l'ambiente <math>\varepsilon</math>. Questo superoperatore è spesso chiamato Lindbladiano. L'equazione GKSL è un'equazione master quantistica per la dinamica markoviana. In questo articolo non abbiamo la possibilità di spiegare la nozione di markovianità quantistica in modo più dettagliato. L'equazione master quantistica (23) descrive generalmente dinamiche non markoviane.
 
----
----

Latest revision as of 16:27, 1 April 2023

8. Sistemi quantistici aperti: interazione di un biosistema con il suo ambiente

Come già sottolineato, qualsiasi biosistema è fondamentalmente aperto. Pertanto, la dinamica del suo stato deve essere modellata tramite un'interazione con l'ambiente circostante . Gli stati di e sono rappresentati negli spazi di Hilbert e . Il sistema composto è rappresentato negli spazi di Hilbert del prodotto tensoriale . Questo sistema è trattato come un sistema isolato e in accordo con la teoria quantistica, la dinamica del suo stato puro può essere descritta dall'equazione di Schrödinger:

 

dove è lo stato puro del sistema e è il suo Hamiltoniano. Questa equazione implica che lo stato puro evolva unitariamente .Qui . L'hamiltoniano (generatore di evoluzione) che descrive le interazioni informative ha la forma , dove  , sono Hamiltoniani dei sistemi e   è l'Hamiltoniana di interazione.12 Questa equazione implica che l'evoluzione dell'operatore di densità del sistema è descritta dall'equazione di von Neumann:

 

uttavia, lo stato   è troppo complesso per qualsiasi analisi matematica: l'ambiente include troppi gradi di libertà. Pertanto, ci interessa solo lo stato di ; la sua dinamica è ottenuta tramite il tracciamento dello stato di   w.r.t. ed i gradi di libertà di :

 

Generalmente questa equazione, la 'equazione quantistica principale', è matematicamente molto complicata. Nelle applicazioni viene utilizzata una varietà di approssimazioni.

8.1. Modello quantistico di Markov: equazione di Gorini–Kossakowski–Sudarshan–Lindblade

L'approssimazione più semplice dell'equazione master quantistica (23) è la dinamica quantistica di Markov data dall'equazione Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) (Ingarden et al., 1997)[1] (in fisica, è comunemente chiamata semplicemente equazione di Lindblad; questa è l'equazione master quantistica più semplice):

 

dove l'operatore hermitiano (Hamiltoniano) descrive la dinamica interna di e il superoperatore , agendo nello spazio degli operatori di densità, descrive un'interazione con l'ambiente . Questo superoperatore è spesso chiamato Lindbladiano. L'equazione GKSL è un'equazione master quantistica per la dinamica markoviana. In questo articolo non abbiamo la possibilità di spiegare la nozione di markovianità quantistica in modo più dettagliato. L'equazione master quantistica (23) descrive generalmente dinamiche non markoviane.


  1. Ingarden R.S., Kossakowski A., Ohya M. Information Dynamics and Open Systems: Classical and Quantum Approach Kluwer, Dordrecht (1997)