Difference between revisions of "Store:ACincisivo"

Line 56: Line 56:
Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto <math>P_1</math> e <math>P_7</math>, la distanza risulta essere di **5.12 mm** con un angolo approssimativamente pari a <math>85^\circ</math>. Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui sotto.   
Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto <math>P_1</math> e <math>P_7</math>, la distanza risulta essere di **5.12 mm** con un angolo approssimativamente pari a <math>85^\circ</math>. Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui sotto.   


{{Tooltip|2=Coordinate dei punti: <math>P_1 = (631.5, -1151.8)</math>, <math>P_7 = (509.6, -1139.9)</math>, <math>{R_p}^+ = (620, -1140)</math>. Il vettore tra <math>P_1</math> e <math>P_7</math> è: <math>\vec{AB} = P_7 - P_1 = (509.6, -1139.9) - (631.5, -1151.8) = (-121.9, 11.9)</math>. Il vettore tra <math>P_1</math> e <math>{R_p}^+</math> è: <math>\vec{AC} = {R_p}^+ - P_1 = (620, -1140) - (631.5, -1151.8) = (-11.5, 11.8)</math>. Il prodotto scalare tra i vettori è calcolato come: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y = (-121.9) \cdot (-11.5) + (11.9) \cdot (11.8) = 1401.85 + 140.42 = 1542.27</math>. Le norme dei vettori sono: <math>|\vec{AB}| = \sqrt{(-121.9)^2 + (11.9)^2} = \sqrt{14850.61 + 141.61} = \sqrt{14992.22} \approx 122.45</math> e <math>|\vec{AC}| = \sqrt{(-11.5)^2 + (11.8)^2} = \sqrt{132.25 + 139.24} = \sqrt{271.49} \approx 16.47</math>. Il coseno dell'angolo tra i vettori è dato da: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{1542.27}{122.45 \cdot 16.47} = \frac{1542.27}{2014.64} \approx 0.7656</math>. Infine, l'angolo è: <math>\theta = \arccos(0.7656) \approx 40.49^\circ</math>.}}
{{Tooltip|2=Coordinate dei punti: <math>P_1 = (631.5, -1151.8)</math>, <math>P_7 = (509.6, -1139.9)</math>, <math>{R_p}^+ = (620, -1140)</math>. Il vettore tra <math>P_1</math> e <math>P_7</math> è <math>\vec{AB} = P_7 - P_1 = (509.6, -1139.9) - (631.5, -1151.8) = (-121.9, 11.9)</math>. Il vettore tra <math>P_1</math> e <math>{R_p}^+</math> è: <math>\vec{AC} = {R_p}^+ - P_1 = (620, -1140) - (631.5, -1151.8) = (-11.5, 11.8)</math>. Il prodotto scalare tra i vettori è calcolato come: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y = (-121.9) \cdot (-11.5) + (11.9) \cdot (11.8) = 1401.85 + 140.42 = 1542.27</math>. Le norme dei vettori sono: <math>|\vec{AB}| = \sqrt{(-121.9)^2 + (11.9)^2} = \sqrt{14850.61 + 141.61} = \sqrt{14992.22} \approx 122.45</math> e <math>|\vec{AC}| = \sqrt{(-11.5)^2 + (11.8)^2} = \sqrt{132.25 + 139.24} = \sqrt{271.49} \approx 16.47</math>. Il coseno dell'angolo tra i vettori è dato da: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{1542.27}{122.45 \cdot 16.47} = \frac{1542.27}{2014.64} \approx 0.7656</math>. Infine, l'angolo è: <math>\theta = \arccos(0.7656) \approx 40.49^\circ</math>.}}

Revision as of 20:12, 21 December 2024

Incisal

Il paragrafo caricato descrive un'analisi matematica dei movimenti articolari dell'incisivo sul lato lavorante. Utilizzando le coordinate di tre punti nello spazio 2D , e , vengono calcolate le distanze lineari tra i punti, oltre all'angolo tra i segmenti che collegano questi punti.

Tabella 3
Tracciato masticatorio Markers Distanza (mm) Direzione in X

(antero-posteriore)

Direzione dinamica

(Y-latero-mediale)

Figura 3: Rappresentazione delle distanze tra punti dell'incisivo
Figura 3:
2 0.69 Indietro Lateralizzazione
3 2.30 Indietro Lateralizzazione
4 4.62 Indietro Lateralizzazione
5 8.46 Avanti Lateralizzazione
6 8.46 Indietro Inversione
7* 5.12 Indietro Medializzazione
8 2.57 Indietro Medializzazione

Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto e , la distanza risulta essere di **5.12 mm** con un angolo approssimativamente pari a . Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui sotto.

 Info.pngCoordinate dei punti: , , . Il vettore tra e è . Il vettore tra e è: . Il prodotto scalare tra i vettori è calcolato come: . Le norme dei vettori sono: e . Il coseno dell'angolo tra i vettori è dato da: . Infine, l'angolo è: .