Difference between revisions of "Store:46laterotrusivo"
Line 1: | Line 1: | ||
===Molare laterotrusivo=== | ===Molare laterotrusivo=== | ||
Il testo descrive un'analisi dettagliata dei movimenti articolari del molare ipsilaterale al condilo laterotrusivo (Figura 3 e tabella 2)e coinvolge vari punti nello spazio 2D per calcolare distanze e angoli utilizzando la trigonometria vettoriale. | Il testo descrive un'analisi dettagliata dei movimenti articolari del molare ipsilaterale al condilo laterotrusivo (Figura 3 e tabella 2)e coinvolge vari punti nello spazio 2D per calcolare distanze e angoli utilizzando la trigonometria vettoriale. | ||
[[File:Angolo molare.jpg | [[File:Angolo molare.jpg|thumb|'''Figura 3:''' Rappresentazione delle distanze tra punti nel molare ipsilaterale alla laterotrusione|center|500x500px]] | ||
{| class="wikitable" | {| class="wikitable" | ||
! colspan="4" |Tabella 2 | ! colspan="4" |Tabella 2 | ||
Line 10: | Line 10: | ||
!Direzione in X | !Direzione in X | ||
(antero-posteriore) | (antero-posteriore) | ||
!Direzione | !Direzione | ||
(latero-mediale) | dinamica | ||
(Y-latero-mediale) | |||
|- | |- | ||
|2 | |2 | ||
|0.874 mm | |0.874 mm | ||
|Indietro | |Indietro | ||
| | |Lateralizzazione | ||
|- | |- | ||
|3 | |3 | ||
|5.442 mm | |5.442 mm | ||
|Indietro | |Indietro | ||
| | |Lateralizzazione | ||
|- | |- | ||
| 4 | | 4 | ||
|8.464 mm | |8.464 mm | ||
| Indietro | | Indietro | ||
| | |Lateralizzazione | ||
|- | |- | ||
|5 | |5 | ||
|13.448 mm | |13.448 mm | ||
|Indietro | |Indietro | ||
| | |Lateralizzazione | ||
|- | |- | ||
|6 | |6 | ||
|16.059 mm | |16.059 mm | ||
|Indietro | |Indietro | ||
| | |Inversione | ||
|- | |- | ||
| 7* | | 7* | ||
|9.199 mm | |9.199 mm | ||
|Indietro | |Indietro | ||
| | |Medializzazione | ||
|- | |- | ||
|8 | |8 | ||
|2.77 mm | |2.77 mm | ||
|Indietro | |Indietro | ||
| | |Medializzazione | ||
|- | |- | ||
| colspan="4" |Rappresentazione delle distanze e dell'angolo formato tra i puntimarcati nel ciclo masticatorio riferiti al punto 1 di massima intercuspidazione. IL punto 7* è il punto considerato per lo specifico calcolo del molare laterotrusivo | | colspan="4" |Rappresentazione delle distanze e dell'angolo formato tra i puntimarcati nel ciclo masticatorio riferiti al punto 1 di massima intercuspidazione. IL punto 7* è il punto considerato per lo specifico calcolo del molare laterotrusivo | ||
Line 53: | Line 56: | ||
Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: {{Tooltip|'''Prodotto scalare'''|Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-89.5) \cdot (2.5) + (28.5) \cdot (161.8) = -223.75 + 4601.3 = 4377.55</math> |2}} Il **prodotto scalare** tra due vettori <math>\vec{AB}</math> e <math>\vec{AC }</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>{{Tooltip|'''Calcolo delle norme'''| <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-89.5)^2 + (28.5)^2} = \sqrt{8010.25 + 812.25} = \sqrt{8822.5} \approx 93.96</math> <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(2.5)^2 + (161.8)^2} = \sqrt{6.25 + 26178.44} = \sqrt{26184.69} \approx 161.78</math>.|2}} Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore {{Tooltip|'''Calcolo dell'angolo'''|<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> Sostituendo i valori: <math>\cos(\theta) = \frac{4377.55}{93.96 \cdot 161.78} = \frac{4377.55}{15193.68} \approx 0.288</math>|2}} Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arcoseno: <math>\theta = \arccos(0.288) \approx 73.32^\circ</math> '''Motivo dell'analisi''' L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria.}} ed il risultato lineare ed angolare è di <math>9.1 </math> mm rispetto al punto <math>7^* </math> ed il coseno dell'angolo è stato calcolato come <math>0.288 </math> , con l'angolo risultante approssimativamente pari a <math> | Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: {{Tooltip|'''Prodotto scalare'''|Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-89.5) \cdot (2.5) + (28.5) \cdot (161.8) = -223.75 + 4601.3 = 4377.55</math> |2}} Il **prodotto scalare** tra due vettori <math>\vec{AB}</math> e <math>\vec{AC }</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>{{Tooltip|'''Calcolo delle norme'''| <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-89.5)^2 + (28.5)^2} = \sqrt{8010.25 + 812.25} = \sqrt{8822.5} \approx 93.96</math> <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(2.5)^2 + (161.8)^2} = \sqrt{6.25 + 26178.44} = \sqrt{26184.69} \approx 161.78</math>.|2}} Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore {{Tooltip|'''Calcolo dell'angolo'''|<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> Sostituendo i valori: <math>\cos(\theta) = \frac{4377.55}{93.96 \cdot 161.78} = \frac{4377.55}{15193.68} \approx 0.288</math>|2}} Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arcoseno: <math>\theta = \arccos(0.288) \approx 73.32^\circ</math> '''Motivo dell'analisi''' L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria.}} ed il risultato lineare ed angolare è di <math>9.1 </math> mm rispetto al punto <math>7^* </math> ed il coseno dell'angolo è stato calcolato come <math>0.288 </math> , con l'angolo risultante approssimativamente pari a <math> | ||
73.32^\circ</math>. | 73.32^\circ</math>. | ||
Revision as of 18:03, 8 December 2024
Molare laterotrusivo
Il testo descrive un'analisi dettagliata dei movimenti articolari del molare ipsilaterale al condilo laterotrusivo (Figura 3 e tabella 2)e coinvolge vari punti nello spazio 2D per calcolare distanze e angoli utilizzando la trigonometria vettoriale.
Tabella 2 | |||
---|---|---|---|
Point | Distance
(mm) |
Direzione in X
(antero-posteriore) |
Direzione
dinamica
|
2 | 0.874 mm | Indietro | Lateralizzazione |
3 | 5.442 mm | Indietro | Lateralizzazione |
4 | 8.464 mm | Indietro | Lateralizzazione |
5 | 13.448 mm | Indietro | Lateralizzazione |
6 | 16.059 mm | Indietro | Inversione |
7* | 9.199 mm | Indietro | Medializzazione |
8 | 2.77 mm | Indietro | Medializzazione |
Rappresentazione delle distanze e dell'angolo formato tra i puntimarcati nel ciclo masticatorio riferiti al punto 1 di massima intercuspidazione. IL punto 7* è il punto considerato per lo specifico calcolo del molare laterotrusivo |
Il formalismo matematico è lo stesso di quello precedentemente descritto e inserito nella nota informativa Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano: Coordinate del punto 1 del molare ipsilaterale al condilo latorotrusivo: *Coordinate del punto 7 del molare ipsilaterale al condilo latorotrusivo: *Coordinate del punto di riferimento del condilo mediotrusivo: Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.Iter matematico per il calcolo dell'angolo L'angolo tra due segmenti può essere calcolato utilizzando la **trigonometria vettoriale** e, in particolare, il **prodotto scalare**. Questo metodo è utile quando vogliamo determinare la relazione angolare tra due movimenti distinti nello spazio. Definizione dei vettori *Il vettore tra il punto e il punto : *Il vettore tra il punto e il punto : Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: Prodotto scalareSostituendo i valori calcolati: Il **prodotto scalare** tra due vettori e è dato dalla formula: Calcolo delle norme . Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore Calcolo dell'angolo Sostituendo i valori: Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: Infine, l'angolo è calcolato tramite la funzione arcoseno: Motivo dell'analisi L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. ed il risultato lineare ed angolare è di mm rispetto al punto ed il coseno dell'angolo è stato calcolato come , con l'angolo risultante approssimativamente pari a .