Difference between revisions of "Store:QLMde02"

Tags: Mobile web edit Mobile edit Visual edit
 
Line 1: Line 1:
== Introduction ==
== Einführung ==
The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro  
Die mathematischen Standardmethoden wurden ursprünglich entwickelt, um der klassischen Physik zu dienen. Die Realanalyse diente als mathematische Grundlage der Newtonschen Mechanik (Newton, 1687)<ref>{{cita libro  
  | autore = Newton Isaac
  | autore = Newton Isaac
  | titolo = Philosophiae naturalis principia mathematica
  | titolo = Philosophiae naturalis principia mathematica
Line 16: Line 16:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> (and later Hamiltonian formalism); classical statistical mechanics stimulated the measure-theoretic approach to probability theory, formalized in Kolmogorov’s axiomatics (Kolmogorov, 1933)<ref>Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)</ref>. However, behavior of biological systems differ essentially from behavior of mechanical systems, say rigid bodies, gas molecules, or fluids. Therefore, although the “classical mathematics” still plays the crucial role in biological modeling, it seems that it cannot fully describe the rich complexity of biosystems and peculiarities of their behavior — as compared with mechanical systems. New mathematical methods for modeling biosystems are on demand.(a,b)
  }}</ref> (und später des Hamiltonschen Formalismus); die klassische statistische Mechanik stimulierte den maßtheoretischen Ansatz der Wahrscheinlichkeitstheorie, formalisiert in Kolmogorovs Axiomatik (Kolmogorov, 1933)<ref>Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)</ref>. Das Verhalten biologischer Systeme unterscheidet sich jedoch wesentlich vom Verhalten mechanischer Systeme, etwa starrer Körper, Gasmoleküle oder Flüssigkeiten. Obwohl die „klassische Mathematik“ immer noch die entscheidende Rolle bei der biologischen Modellierung spielt, scheint sie daher die reiche Komplexität von Biosystemen und Besonderheiten ihres Verhaltens – im Vergleich zu mechanischen Systemen – nicht vollständig beschreiben zu können. Neue mathematische Methoden zur Modellierung von Biosystemen sind gefragt.(a,b)


In this paper, we present the applications of the mathematical formalism of quantum mechanics and its methodology to modeling biosystems’ behavior.(c) The recent years were characterized by explosion of interest to applications of quantum theory outside of physics, especially in cognitive psychology, decision making, information processing in the brain, molecular biology, genetics and epigenetics, and evolution theory.4 We call the corresponding models ''quantum-like''. They are not directed to micro-level modeling of real quantum physical processes in biosystems, say in cells or brains (cf. with biological applications of genuine quantum physical theory Penrose 1989,<ref>Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)</ref> Umezawa 1993,<ref>Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)</ref> Hameroff 1994,<ref>Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)</ref> Vitiello 1995,<ref>Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973</ref> Vitiello 2001,<ref>Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)</ref> Arndt et al., 2009,<ref>Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985</ref> Bernroider and Summhammer 2012,<ref>Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37</ref> Bernroider 2017<ref>Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9</ref>). Quantum-like modeling works from the viewpoint to quantum theory as a measurement theory. This is the original Bohr’s viewpoint that led to ''the Copenhagen interpretation of quantum mechanics'' (see Plotnitsky, 2009<ref>Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009</ref> for detailed and clear presentation of Bohr’s views). One of the main bio-specialties is consideration of ''self-measurements that biosystems perform on themselves.'' In our modeling, the ability to perform self-measurements is considered as the basic feature of biological functions (see Section 8.2 and paper Khrennikov et al., 2018<ref name=":0">Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225</ref>).
In diesem Artikel stellen wir die Anwendungen des mathematischen Formalismus der Quantenmechanik und seiner Methodik zur Modellierung des Verhaltens von Biosystemen vor.(c) Die letzten Jahre waren gekennzeichnet durch eine Explosion des Interesses an Anwendungen der Quantentheorie außerhalb der Physik, insbesondere in der kognitiven Psychologie, Entscheidungsfindung, Informationsverarbeitung im Gehirn, Molekularbiologie, Genetik und Epigenetik und Evolutionstheorie.4 Wir nennen die entsprechenden Modelle quantenartig. Sie zielen nicht auf die Mikromodellierung echter quantenphysikalischer Prozesse in Biosystemen ab, etwa in Zellen oder Gehirnen (vgl. zu biologischen Anwendungen echter quantenphysikalischer Theorie Penrose 1989<ref>Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)</ref>, Umezawa 1993<ref>Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)</ref>, Hameroff 1994<ref>Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)</ref>, Vitiello 1995<ref>Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973</ref>, Vitiello 2001<ref>Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)</ref>, Arndt et al., 2009<ref>Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985</ref>, Bernroider und Summhammer 2012<ref>Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37</ref>, Bernroider 2017<ref>Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9</ref>). Quantenähnliche Modellierung arbeitet aus Sicht der Quantentheorie als Messtheorie. Dies ist der ursprüngliche Standpunkt Bohrs, der zur Kopenhagener Interpretation der Quantenmechanik führte (siehe Plotnitsky, 2009<ref>Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009</ref> für eine detaillierte und klare Darstellung von Bohrs Ansichten). Eine der wichtigsten Bio-Spezialitäten ist die Berücksichtigung von Selbstmessungen, die Biosysteme an sich selbst durchführen. In unserer Modellierung wird die Fähigkeit zur Durchführung von Selbstmessungen als grundlegendes Merkmal biologischer Funktionen betrachtet (siehe Abschnitt 8.2 und Artikel Khrennikov et al., 2018<ref name=":0">Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225</ref>).


''Quantum-like models'' (Khrennikov, 2004b<ref>Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275</ref>) reflect the features of biological processes that naturally match the quantum formalism. In such modeling, it is useful to explore ''quantum information theory,'' which can be applied not just to the micro-world of quantum systems. Generally, systems processing information in the quantum-like manner need not be quantum physical systems; in particular, they can be macroscopic biosystems. Surprisingly, the same mathematical theory can be applied at all biological scales: from proteins, cells and brains to humans and ecosystems; we can speak about ''quantum information biology'' (Asano et al., 2015a<ref name=":Asano et al., 2015a">Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378</ref>).
Quantenähnliche Modelle (Khrennikov, 2004b<ref>Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275</ref>) spiegeln die Merkmale biologischer Prozesse wider, die natürlicherweise mit dem Quantenformalismus übereinstimmen. Bei einer solchen Modellierung ist es nützlich, die Quanteninformationstheorie zu untersuchen, die nicht nur auf die Mikrowelt der Quantensysteme angewendet werden kann. Im Allgemeinen müssen Systeme, die Informationen auf quantenähnliche Weise verarbeiten, keine quantenphysikalischen Systeme sein; insbesondere können sie makroskopische Biosysteme sein. Überraschenderweise kann dieselbe mathematische Theorie auf allen biologischen Ebenen angewendet werden: von Proteinen, Zellen und Gehirnen bis hin zu Menschen und Ökosystemen; wir können von Quanteninformationsbiologie sprechen (Asano et al., 2015a<ref name=":Asano et al., 2015a">Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378</ref>).


In quantum-like modeling, quantum theory is considered as calculus for prediction and transformation of probabilities. Quantum probability (QP) calculus (Section 2) differs essentially from classical probability (CP) calculus based on Kolmogorov’s axiomatics (Kolmogorov, 1933<ref name=":2">Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)</ref>). In CP, states of random systems are represented by probability measures and observables by random variables; in QP, states of random systems are represented by normalized vectors in a complex Hilbert space (pure states) or generally by density operators (mixed states).5 Superpositions represented by pure states are used to model uncertainty which is yet unresolved by a measurement. The use of superpositions in biology is illustrated by Fig. 1 (see Section 10 and paper Khrennikov et al., 2018<ref name=":0" /> for the corresponding model). The QP-update resulting from an observation is based on the projection postulate or more general transformations of quantum states — in the framework of theory of quantum instruments (Davies and Lewis, 1970<ref name=":3">Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260</ref>, Davies, 1976<ref name=":4">Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)</ref>, Ozawa, 1984<ref name=":5">Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87</ref>, Yuen, 1987<ref name=":6">Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.</ref>, Ozawa, 1997<ref name=":7">Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137</ref>, Ozawa, 2004<ref name=":8">Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416</ref>, Okamura and Ozawa, 2016<ref name=":9">Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209</ref>) (Section 3).
In der quantenähnlichen Modellierung wird die Quantentheorie als Kalkül zur Vorhersage und Transformation von Wahrscheinlichkeiten betrachtet. Die Quantenwahrscheinlichkeitsrechnung (QP) (Abschnitt 2) unterscheidet sich wesentlich von der klassischen Wahrscheinlichkeitsrechnung (CP), die auf Kolmogorovs Axiomatik basiert (Kolmogorov, 1933<ref name=":2">Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)</ref>). In CP werden Zustände von Zufallssystemen durch Wahrscheinlichkeitsmaße und Observables durch Zufallsvariablen dargestellt; in QP werden Zustände zufälliger Systeme durch normalisierte Vektoren in einem komplexen Hilbert-Raum (reine Zustände) oder allgemein durch Dichteoperatoren (gemischte Zustände) dargestellt.5 Superpositionen, die durch reine Zustände dargestellt werden, werden verwendet, um Unsicherheiten zu modellieren, die noch nicht durch eine Messung aufgelöst wurden. Die Verwendung von Überlagerungen in der Biologie wird durch Abb. 1 veranschaulicht (siehe Abschnitt 10 und Artikel Khrennikov et al., 2018<ref name=":0" /> für das entsprechende Modell). Das aus einer Beobachtung resultierende QP-Update basiert auf dem Projektionspostulat oder allgemeineren Transformationen von Quantenzuständen – im Rahmen der Theorie von Quanteninstrumenten (Davies und Lewis, 1970<ref name=":3">Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260</ref>, Davies, 1976<ref name=":4">Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)</ref>, Ozawa, 1984<ref name=":5">Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87</ref>, Yuen, 1987<ref name=":6">Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.</ref>, Ozawa , 1997<ref name=":7">Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137</ref>, Ozawa, 2004<ref name=":8">Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416</ref>, Okamura und Ozawa, 2016<ref name=":9">Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209</ref>) (Abschnitt 3).
[[File:Schrodinger 1.jpeg|left|thumb|Fig. 1. Illustration for quantum-like representation of uncertainty generated by neuron’s action potential (originally published in Khrennikov et al. (2018)).]]
[[File:Schrodinger 1.jpeg|left|thumb|Fig. 1. Illustration for quantum-like representation of uncertainty generated by neuron’s action potential (originally published in Khrennikov et al. (2018)).]]
We stress that quantum-like modeling elevates the role of convenience and simplicity of quantum representation of states and observables. (We pragmatically ignore the problem of interrelation of CP and QP.) In particular, the quantum state space has the linear structure and linear models are simpler. Transition from classical nonlinear dynamics of electrochemical processes in biosystems to quantum linear dynamics essentially speeds up the state-evolution (Section 8.4). However, in this framework “state” is the quantum information state of a biosystem used for processing of special quantum uncertainty (Section 8.2).
Wir betonen, dass die quantenähnliche Modellierung die Rolle der Bequemlichkeit und Einfachheit der Quantendarstellung von Zuständen und Observablen erhöht. (Wir ignorieren pragmatisch das Problem der Wechselbeziehung von CP und QP.) Insbesondere hat der Quantenzustandsraum die lineare Struktur und lineare Modelle sind einfacher. Der Übergang von der klassischen nichtlinearen Dynamik elektrochemischer Prozesse in Biosystemen zur quantenlinearen Dynamik beschleunigt wesentlich die Zustandsentwicklung (Abschnitt 8.4). In diesem Rahmen ist „Zustand“ jedoch der Quanteninformationszustand eines Biosystems, der zur Verarbeitung spezieller Quantenunsicherheit verwendet wird (Abschnitt 8.2).

Latest revision as of 10:44, 12 April 2023

Einführung

Die mathematischen Standardmethoden wurden ursprünglich entwickelt, um der klassischen Physik zu dienen. Die Realanalyse diente als mathematische Grundlage der Newtonschen Mechanik (Newton, 1687)[1] (und später des Hamiltonschen Formalismus); die klassische statistische Mechanik stimulierte den maßtheoretischen Ansatz der Wahrscheinlichkeitstheorie, formalisiert in Kolmogorovs Axiomatik (Kolmogorov, 1933)[2]. Das Verhalten biologischer Systeme unterscheidet sich jedoch wesentlich vom Verhalten mechanischer Systeme, etwa starrer Körper, Gasmoleküle oder Flüssigkeiten. Obwohl die „klassische Mathematik“ immer noch die entscheidende Rolle bei der biologischen Modellierung spielt, scheint sie daher die reiche Komplexität von Biosystemen und Besonderheiten ihres Verhaltens – im Vergleich zu mechanischen Systemen – nicht vollständig beschreiben zu können. Neue mathematische Methoden zur Modellierung von Biosystemen sind gefragt.(a,b)

In diesem Artikel stellen wir die Anwendungen des mathematischen Formalismus der Quantenmechanik und seiner Methodik zur Modellierung des Verhaltens von Biosystemen vor.(c) Die letzten Jahre waren gekennzeichnet durch eine Explosion des Interesses an Anwendungen der Quantentheorie außerhalb der Physik, insbesondere in der kognitiven Psychologie, Entscheidungsfindung, Informationsverarbeitung im Gehirn, Molekularbiologie, Genetik und Epigenetik und Evolutionstheorie.4 Wir nennen die entsprechenden Modelle quantenartig. Sie zielen nicht auf die Mikromodellierung echter quantenphysikalischer Prozesse in Biosystemen ab, etwa in Zellen oder Gehirnen (vgl. zu biologischen Anwendungen echter quantenphysikalischer Theorie Penrose 1989[3], Umezawa 1993[4], Hameroff 1994[5], Vitiello 1995[6], Vitiello 2001[7], Arndt et al., 2009[8], Bernroider und Summhammer 2012[9], Bernroider 2017[10]). Quantenähnliche Modellierung arbeitet aus Sicht der Quantentheorie als Messtheorie. Dies ist der ursprüngliche Standpunkt Bohrs, der zur Kopenhagener Interpretation der Quantenmechanik führte (siehe Plotnitsky, 2009[11] für eine detaillierte und klare Darstellung von Bohrs Ansichten). Eine der wichtigsten Bio-Spezialitäten ist die Berücksichtigung von Selbstmessungen, die Biosysteme an sich selbst durchführen. In unserer Modellierung wird die Fähigkeit zur Durchführung von Selbstmessungen als grundlegendes Merkmal biologischer Funktionen betrachtet (siehe Abschnitt 8.2 und Artikel Khrennikov et al., 2018[12]).

Quantenähnliche Modelle (Khrennikov, 2004b[13]) spiegeln die Merkmale biologischer Prozesse wider, die natürlicherweise mit dem Quantenformalismus übereinstimmen. Bei einer solchen Modellierung ist es nützlich, die Quanteninformationstheorie zu untersuchen, die nicht nur auf die Mikrowelt der Quantensysteme angewendet werden kann. Im Allgemeinen müssen Systeme, die Informationen auf quantenähnliche Weise verarbeiten, keine quantenphysikalischen Systeme sein; insbesondere können sie makroskopische Biosysteme sein. Überraschenderweise kann dieselbe mathematische Theorie auf allen biologischen Ebenen angewendet werden: von Proteinen, Zellen und Gehirnen bis hin zu Menschen und Ökosystemen; wir können von Quanteninformationsbiologie sprechen (Asano et al., 2015a[14]).

In der quantenähnlichen Modellierung wird die Quantentheorie als Kalkül zur Vorhersage und Transformation von Wahrscheinlichkeiten betrachtet. Die Quantenwahrscheinlichkeitsrechnung (QP) (Abschnitt 2) unterscheidet sich wesentlich von der klassischen Wahrscheinlichkeitsrechnung (CP), die auf Kolmogorovs Axiomatik basiert (Kolmogorov, 1933[15]). In CP werden Zustände von Zufallssystemen durch Wahrscheinlichkeitsmaße und Observables durch Zufallsvariablen dargestellt; in QP werden Zustände zufälliger Systeme durch normalisierte Vektoren in einem komplexen Hilbert-Raum (reine Zustände) oder allgemein durch Dichteoperatoren (gemischte Zustände) dargestellt.5 Superpositionen, die durch reine Zustände dargestellt werden, werden verwendet, um Unsicherheiten zu modellieren, die noch nicht durch eine Messung aufgelöst wurden. Die Verwendung von Überlagerungen in der Biologie wird durch Abb. 1 veranschaulicht (siehe Abschnitt 10 und Artikel Khrennikov et al., 2018[12] für das entsprechende Modell). Das aus einer Beobachtung resultierende QP-Update basiert auf dem Projektionspostulat oder allgemeineren Transformationen von Quantenzuständen – im Rahmen der Theorie von Quanteninstrumenten (Davies und Lewis, 1970[16], Davies, 1976[17], Ozawa, 1984[18], Yuen, 1987[19], Ozawa , 1997[20], Ozawa, 2004[21], Okamura und Ozawa, 2016[22]) (Abschnitt 3).

Fig. 1. Illustration for quantum-like representation of uncertainty generated by neuron’s action potential (originally published in Khrennikov et al. (2018)).

Wir betonen, dass die quantenähnliche Modellierung die Rolle der Bequemlichkeit und Einfachheit der Quantendarstellung von Zuständen und Observablen erhöht. (Wir ignorieren pragmatisch das Problem der Wechselbeziehung von CP und QP.) Insbesondere hat der Quantenzustandsraum die lineare Struktur und lineare Modelle sind einfacher. Der Übergang von der klassischen nichtlinearen Dynamik elektrochemischer Prozesse in Biosystemen zur quantenlinearen Dynamik beschleunigt wesentlich die Zustandsentwicklung (Abschnitt 8.4). In diesem Rahmen ist „Zustand“ jedoch der Quanteninformationszustand eines Biosystems, der zur Verarbeitung spezieller Quantenunsicherheit verwendet wird (Abschnitt 8.2).

  1. Newton Isaac, «Philosophiae naturalis principia mathematica», Benjamin Motte, 1687, London UK». 
  2. Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)
  3. Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)
  4. Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)
  5. Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)
  6. Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973
  7. Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)
  8. Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985
  9. Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37
  10. Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9
  11. Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009
  12. 12.0 12.1 Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225
  13. Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275
  14. Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378
  15. Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)
  16. Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260
  17. Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)
  18. Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87
  19. Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.
  20. Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137
  21. Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416
  22. Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209