Difference between revisions of "Store:QLMit18"

(Created page with "===11.3. Psychological functions=== Now, we turn to the model presented in Section 10. A neural network is modeled as a compound quantum system; its state is presented in tensor product of single-neuron state spaces. Brain’s functions perform self-measurements modeled within theory of open quantum systems. (There is no need to consider state’s collapse.) State’s dynamics of some brain’s function (psychological function) <math>F</math> is described by the quantum...")
 
 
Line 1: Line 1:
===11.3. Psychological functions===
===11.3. Funzioni psicologiche===
Now, we turn to the model presented in Section 10. A neural network is modeled as a compound quantum system; its state is presented in tensor product of single-neuron state spaces. Brain’s functions perform self-measurements modeled within theory of open quantum systems. (There is no need to consider state’s collapse.) State’s dynamics of some brain’s function (psychological function) <math>F</math> is described by the quantum master equation. Its steady states represent classical statistical mixtures of possible outputs of <math>F</math> (decisions). Thus through interaction with electrochemical environment, <math>F</math> (considered as an open system) resolves uncertainty that was originally encoded in entangled state representing uncertainties in action potentials of neurons and correlations between them.
Passiamo ora al modello presentato nella Sezione 10. Una rete neurale è modellata come un sistema quantistico composto; il suo stato è presentato come prodotto tensoriale di spazi di stato a singolo neurone. Le funzioni del cervello eseguono automisurazioni modellate all'interno della teoria dei sistemi quantistici aperti. (Non è necessario considerare il collasso dello stato.) La dinamica dello stato di alcune funzioni cerebrali (funzioni psicologiche) <math>F</math> è descritta dall'equazione quantistica principale. I suoi stati stazionari rappresentano miscele statistiche classiche di possibili risultati di <math>F</math> (decisioni). Pertanto, attraverso l'interazione con l'ambiente elettrochimico, <math>F</math> (considerato come un sistema aperto) risolve l'incertezza originariamente codificata nello stato entangled che rappresenta le incertezze nei potenziali d'azione dei neuroni e le correlazioni tra di loro.


Entanglement plays the crucial role in generating consistency in neurons’ dynamics. As in Section 11.1, suppose that the quantum information representation is based on 0–1 <math>0-1</math> code. Consider a network of <math>n</math> neurons interacting with the surrounding electrochemical environment <math>\varepsilon</math>, including signaling from other neural networks. The information state is given by (32). Entanglement encodes correlations between firing of individual neurons. For example, the state (33) is associated with two neurons firing synchronically and the state (34) with two neurons firing asynchronically.
L'entanglement gioca il ruolo cruciale nel generare coerenza nella dinamica dei neuroni. Come nella Sezione 11.1, supponiamo che la rappresentazione dell'informazione quantistica sia basata sul codice <math>0-1</math> . Considera una rete di <math>n</math> neuroni che interagiscono con l'ambiente elettrochimico circostante <math>\varepsilon</math>, inclusa la segnalazione da altre reti neurali. Lo stato delle informazioni è dato dalla (32). L'entanglement codifica le correlazioni tra l'attivazione dei singoli neuroni. Ad esempio, lo stato (33) è associato a due neuroni che si attivano in modo sincrono e lo stato (34) a due neuroni che si attivano in modo asincrono.


Outputs of the psychological function <math>F</math> based biophysically on a neural network are resulted from consistent state dynamics of individual neurons belonging to this network. As was already emphasized, state’s evolution toward a steady state is very rapid, as a consequence of linearity of the open system dynamics; the off-diagonal elements of the density matrix decrease exponentially quickly.
Gli output della funzione psicologica <math>F</math> basata biofisicamente su una rete neurale sono il risultato di dinamiche di stato coerenti dei singoli neuroni appartenenti a questa rete. Come già sottolineato, l'evoluzione dello stato verso uno stato stazionario è molto rapida, come conseguenza della linearità della dinamica del sistema aperto; gli elementi fuori diagonale della matrice di densità diminuiscono in modo esponenziale rapidamente.


==12. Concluding remarks==
==12. Osservazioni conclusive==
Since 1990th (Khrennikov, 1999), quantum-like modeling outside of physics, especially modeling of cognition and decision making, flowered worldwide. ''Quantum information theory'' (coupled to measurement and open quantum systems theories) is fertile ground for quantum-like flowers. The basic hypothesis presented in this paper is that functioning of biosystems is based on the quantum information representation of their states. This representation is the output of the biological evolution. The latter is considered as the evolution in the information space. So, biosystems react not only to material or energy constraints imposed by the environment, but also to the information constraints. In this paper, biological functions are considered as open information systems interacting with information environment.
Dal 1990 (Khrennikov, 1999),<ref>Khrennikov A.


The quantum-like representation of information provides the possibility to process superpositions. This way of information processing is advantageous as saving computational resources: a biological function <math>F</math> need not to resolve uncertainties encoded in superpositions and to calculate JPDs of all compatible variables involved in the performance of <math>F</math>.
Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys., 29 (1999), pp. 1065-1098</ref> la modellazione quantistica al di fuori della fisica, in particolare la modellazione della cognizione e del processo decisionale, è fiorita in tutto il mondo. La teoria dell'informazione quantistica (accoppiata alla misurazione e alle teorie dei sistemi quantistici aperti) è un terreno fertile per i sostenitori della simil-quantistica. L'ipotesi di base presentata in questo articolo è che il funzionamento dei biosistemi sia basato sulla rappresentazione dell'informazione quantistica dei loro stati. Questa rappresentazione è l'output dell'evoluzione biologica. Quest'ultimo è considerato come l'evoluzione nello spazio dell'informazione. Quindi, i biosistemi reagiscono non solo ai vincoli materiali o energetici imposti dall'ambiente, ma anche ai vincoli informativi. In questo lavoro, le funzioni biologiche sono considerate come sistemi informativi aperti che interagiscono con l'ambiente informativo.


Another advantageous feature of quantum-like information processing is its linearity. Transition from nonlinear dynamics of electrochemical states to linear quantum-like dynamics tremendously speeds up state-processing (for gene-expression, epimutations, and generally decision making). In this framework, decision makers are genes, proteins, cells, brains, ecological systems.
La rappresentazione quantistica delle informazioni offre la possibilità di elaborare sovrapposizioni. Questo modo di elaborare le informazioni è vantaggioso in quanto consente di risparmiare risorse computazionali: una funzione biologica <math>F</math> non ha bisogno di risolvere le incertezze codificate nelle sovrapposizioni e di calcolare i JPD di tutte le variabili compatibili coinvolte nell'esecuzione di <math>F</math>.


Biological functions developed ''the ability to perform self-measurements'', to generate outputs of their functioning. We model this ability in the framework of open quantum systems, as decision making through decoherence. We emphasize that this model is free from the ambiguous notion of collapse of the wave function.
Un'altra caratteristica vantaggiosa dell'elaborazione delle informazioni di tipo quantistico è la sua linearità. La transizione dalla dinamica non lineare degli stati elettrochimici alla dinamica lineare di tipo quantistico accelera enormemente l'elaborazione dello stato (per l'espressione genica, le epimutazioni e in generale il processo decisionale). In questo quadro, i decisori sono geni, proteine, cellule, cervelli, sistemi ecologici.


Correlations inside a biological function as well as between different biological functions and environment are represented linearly by entangled quantum states.
Le funzioni biologiche hanno sviluppato la capacità di eseguire automisurazioni, per generare output del loro funzionamento. Modelliamo questa capacità nel quadro di sistemi quantistici aperti, come processo decisionale attraverso la decoerenza. Sottolineiamo che questo modello è libero dalla nozione ambigua di collasso della funzione d'onda.


We hope that this paper would be useful for biologists (especially working on mathematical modeling) as an introduction to the quantum-like approach to model functioning of biosystems. We also hope that it can attract attention of experts in quantum information theory to the possibility to use its formalism and methodology in biological studies.
Le correlazioni all'interno di una funzione biologica così come tra diverse funzioni biologiche e l'ambiente sono rappresentate linearmente da stati quantistici entangled.


==Declaration of Competing Interest==
Ci auguriamo che questo documento possa essere utile per i biologi (specialmente che lavorano sulla modellazione matematica) come introduzione all'approccio di tipo quantistico per modellare il funzionamento dei biosistemi. Ci auguriamo inoltre che possa attirare l'attenzione degli esperti di teoria dell'informazione quantistica sulla possibilità di utilizzare il suo formalismo e la sua metodologia negli studi biologici.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.


==Acknowledgments==
==Dichiarazione di interesse concorrente==
This work was partially supported by JSPS, Japan KAKENHI, Nos. 26247016and 17K19970. M.O. acknowledges the support of the IRI-NU collaboration, Japan .
Gli autori dichiarano di non avere interessi finanziari concorrenti noti o relazioni personali che potrebbero aver influenzato il lavoro riportato in questo documento.
 
==Ringraziamenti==
Questo lavoro è stato parzialmente supportato da JSPS, Japan KAKENHI, n. 26247016 e 17K19970. MO riconosce il sostegno della collaborazione IRI-NU, Giappone .

Latest revision as of 16:01, 2 April 2023

11.3. Funzioni psicologiche

Passiamo ora al modello presentato nella Sezione 10. Una rete neurale è modellata come un sistema quantistico composto; il suo stato è presentato come prodotto tensoriale di spazi di stato a singolo neurone. Le funzioni del cervello eseguono automisurazioni modellate all'interno della teoria dei sistemi quantistici aperti. (Non è necessario considerare il collasso dello stato.) La dinamica dello stato di alcune funzioni cerebrali (funzioni psicologiche) è descritta dall'equazione quantistica principale. I suoi stati stazionari rappresentano miscele statistiche classiche di possibili risultati di (decisioni). Pertanto, attraverso l'interazione con l'ambiente elettrochimico, (considerato come un sistema aperto) risolve l'incertezza originariamente codificata nello stato entangled che rappresenta le incertezze nei potenziali d'azione dei neuroni e le correlazioni tra di loro.

L'entanglement gioca il ruolo cruciale nel generare coerenza nella dinamica dei neuroni. Come nella Sezione 11.1, supponiamo che la rappresentazione dell'informazione quantistica sia basata sul codice . Considera una rete di neuroni che interagiscono con l'ambiente elettrochimico circostante , inclusa la segnalazione da altre reti neurali. Lo stato delle informazioni è dato dalla (32). L'entanglement codifica le correlazioni tra l'attivazione dei singoli neuroni. Ad esempio, lo stato (33) è associato a due neuroni che si attivano in modo sincrono e lo stato (34) a due neuroni che si attivano in modo asincrono.

Gli output della funzione psicologica basata biofisicamente su una rete neurale sono il risultato di dinamiche di stato coerenti dei singoli neuroni appartenenti a questa rete. Come già sottolineato, l'evoluzione dello stato verso uno stato stazionario è molto rapida, come conseguenza della linearità della dinamica del sistema aperto; gli elementi fuori diagonale della matrice di densità diminuiscono in modo esponenziale rapidamente.

12. Osservazioni conclusive

Dal 1990 (Khrennikov, 1999),[1] la modellazione quantistica al di fuori della fisica, in particolare la modellazione della cognizione e del processo decisionale, è fiorita in tutto il mondo. La teoria dell'informazione quantistica (accoppiata alla misurazione e alle teorie dei sistemi quantistici aperti) è un terreno fertile per i sostenitori della simil-quantistica. L'ipotesi di base presentata in questo articolo è che il funzionamento dei biosistemi sia basato sulla rappresentazione dell'informazione quantistica dei loro stati. Questa rappresentazione è l'output dell'evoluzione biologica. Quest'ultimo è considerato come l'evoluzione nello spazio dell'informazione. Quindi, i biosistemi reagiscono non solo ai vincoli materiali o energetici imposti dall'ambiente, ma anche ai vincoli informativi. In questo lavoro, le funzioni biologiche sono considerate come sistemi informativi aperti che interagiscono con l'ambiente informativo.

La rappresentazione quantistica delle informazioni offre la possibilità di elaborare sovrapposizioni. Questo modo di elaborare le informazioni è vantaggioso in quanto consente di risparmiare risorse computazionali: una funzione biologica non ha bisogno di risolvere le incertezze codificate nelle sovrapposizioni e di calcolare i JPD di tutte le variabili compatibili coinvolte nell'esecuzione di .

Un'altra caratteristica vantaggiosa dell'elaborazione delle informazioni di tipo quantistico è la sua linearità. La transizione dalla dinamica non lineare degli stati elettrochimici alla dinamica lineare di tipo quantistico accelera enormemente l'elaborazione dello stato (per l'espressione genica, le epimutazioni e in generale il processo decisionale). In questo quadro, i decisori sono geni, proteine, cellule, cervelli, sistemi ecologici.

Le funzioni biologiche hanno sviluppato la capacità di eseguire automisurazioni, per generare output del loro funzionamento. Modelliamo questa capacità nel quadro di sistemi quantistici aperti, come processo decisionale attraverso la decoerenza. Sottolineiamo che questo modello è libero dalla nozione ambigua di collasso della funzione d'onda.

Le correlazioni all'interno di una funzione biologica così come tra diverse funzioni biologiche e l'ambiente sono rappresentate linearmente da stati quantistici entangled.

Ci auguriamo che questo documento possa essere utile per i biologi (specialmente che lavorano sulla modellazione matematica) come introduzione all'approccio di tipo quantistico per modellare il funzionamento dei biosistemi. Ci auguriamo inoltre che possa attirare l'attenzione degli esperti di teoria dell'informazione quantistica sulla possibilità di utilizzare il suo formalismo e la sua metodologia negli studi biologici.

Dichiarazione di interesse concorrente

Gli autori dichiarano di non avere interessi finanziari concorrenti noti o relazioni personali che potrebbero aver influenzato il lavoro riportato in questo documento.

Ringraziamenti

Questo lavoro è stato parzialmente supportato da JSPS, Japan KAKENHI, n. 26247016 e 17K19970. MO riconosce il sostegno della collaborazione IRI-NU, Giappone .

  1. Khrennikov A. Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys., 29 (1999), pp. 1065-1098