Difference between revisions of "Store:QLMen05"

(Created page with "==3. Quantum instruments== ===3.1. A few words about the quantum formalism=== Denote by  <math display="inline">\mathcal{H}</math> a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system <math>S</math> are given by normalized vectors of  <math display="inline">\mathcal{H}</math> and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by <math>S...")
 
Line 15: Line 15:




where <math display="inline">\hat{\mathcal{H}}</math>  is system’s Hamiltonian. This equation implies that the pure state <math>\psi(t)</math> evolves unitarily <math>\psi(t)= \hat{U}(t)\psi_0</math>, where  <math>\hat{U}(t)=e^{-it\hat{\mathcal H}}</math> is one parametric group of unitary operators,<math>\hat{U}(t):\mathcal{H}\rightarrow \mathcal{H}</math> . In quantum physics, Hamiltonian  <math display="inline">\hat{\mathcal{H}}</math> is associated with the energy-observable. The same interpretation is used in quantum biophysics (Arndt et al., 2009). However, in our quantum-like modeling describing information processing in biosystems, the operator  <math display="inline">\hat{\mathcal{H}}</math> has no direct coupling with physical energy. This is the evolution-generator describing information interactions.
where <math display="inline">\hat{\mathcal{H}}</math>  is system’s Hamiltonian. This equation implies that the pure state <math>\psi(t)</math> evolves unitarily <math>\psi(t)= \hat{U}(t)\psi_0</math>, where  <math>\hat{U}(t)=e^{-it\hat{\mathcal H}}</math> is one parametric group of unitary operators,<math>\hat{U}(t):\mathcal{H}\rightarrow \mathcal{H}</math> . In quantum physics, Hamiltonian  <math display="inline">\hat{\mathcal{H}}</math> is associated with the energy-observable. The same interpretation is used in quantum biophysics (Arndt et al., 2009).<ref>Arndt M., Juffmann T., Vedral V.
 
Quantum physics meets biology
 
HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985</ref> However, in our quantum-like modeling describing information processing in biosystems, the operator  <math display="inline">\hat{\mathcal{H}}</math> has no direct coupling with physical energy. This is the evolution-generator describing information interactions.


Schrödinger’s dynamics for a pure state implies that the dynamics of a mixed state (represented by a density operator) is described by the ''von Neumann equation'':  
Schrödinger’s dynamics for a pure state implies that the dynamics of a mixed state (represented by a density operator) is described by the ''von Neumann equation'':  

Revision as of 10:13, 11 November 2022

3. Quantum instruments

3.1. A few words about the quantum formalism

Denote by   a complex Hilbert space. For simplicity, we assume that it is finite dimensional. Pure states of a system are given by normalized vectors of   and mixed states by density operators (positive semi-definite operators with unit trace). The space of density operators is denoted by (). The space of all linear operators in  is denoted by the symbol . In turn, this is a linear space. Moreover,  is the complex Hilbert space with the scalar product, . We consider linear operators acting in . They are called superoperators.

The dynamics of the pure state of an isolated quantum system is described by the Schrödinger equation:

 


where   is system’s Hamiltonian. This equation implies that the pure state evolves unitarily , where   is one parametric group of unitary operators, . In quantum physics, Hamiltonian   is associated with the energy-observable. The same interpretation is used in quantum biophysics (Arndt et al., 2009).[1] However, in our quantum-like modeling describing information processing in biosystems, the operator   has no direct coupling with physical energy. This is the evolution-generator describing information interactions.

Schrödinger’s dynamics for a pure state implies that the dynamics of a mixed state (represented by a density operator) is described by the von Neumann equation:

 
  1. Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985