Difference between revisions of "Store:QLMit02"

(Created page with "== Introduction == The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro | autore = Newton Isaac | titolo = Philosophiae naturalis principia mathematica | url = https://archive.org/details/bub_gb_6EqxPav3vIsC | volume = | opera = | anno = 1687 | editore = Benjamin Motte | città = London UK | ISBN = | DOI = | PMID =...")
 
Line 1: Line 1:
== Introduction ==
== Introduction ==
The standard mathematical methods were originally developed to serve classical physics. The real analysis served as the mathematical basis of Newtonian mechanics (Newton, 1687)<ref>{{cita libro  
I metodi matematici standard furono originariamente sviluppati per servire la fisica classica. L'analisi reale servì come base matematica della meccanica newtoniana (Newton, 1687)<ref>{{cita libro  
  | autore = Newton Isaac
  | autore = Newton Isaac
  | titolo = Philosophiae naturalis principia mathematica
  | titolo = Philosophiae naturalis principia mathematica
Line 16: Line 16:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> (and later Hamiltonian formalism); classical statistical mechanics stimulated the measure-theoretic approach to probability theory, formalized in Kolmogorov’s axiomatics (Kolmogorov, 1933)<ref>Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)</ref>. However, behavior of biological systems differ essentially from behavior of mechanical systems, say rigid bodies, gas molecules, or fluids. Therefore, although the “classical mathematics” still plays the crucial role in biological modeling, it seems that it cannot fully describe the rich complexity of biosystems and peculiarities of their behavior — as compared with mechanical systems. New mathematical methods for modeling biosystems are on demand.(a,b)
  }}</ref> (e più tardi del formalismo Hamiltoniano); la meccanica statistica classica stimolò l'approccio della teoria della misura alla teoria della probabilità, formalizzata nell'assiomatica di Kolmogorov (Kolmogorov, 1933).<ref>Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)</ref> Tuttavia, il comportamento dei sistemi biologici differisce essenzialmente dal comportamento dei sistemi meccanici, ad esempio corpi rigidi, molecole di gas o fluidi. Pertanto, sebbene la "matematica classica" svolga ancora il ruolo cruciale nella modellazione biologica, sembra che non possa descrivere completamente la ricca complessità dei biosistemi e le peculiarità del loro comportamento, rispetto ai sistemi meccanici. Sono disponibili nuovi metodi matematici per la modellazione dei biosistemi.(a,b)


In this paper, we present the applications of the mathematical formalism of quantum mechanics and its methodology to modeling biosystems’ behavior.(c) The recent years were characterized by explosion of interest to applications of quantum theory outside of physics, especially in cognitive psychology, decision making, information processing in the brain, molecular biology, genetics and epigenetics, and evolution theory.4 We call the corresponding models ''quantum-like''. They are not directed to micro-level modeling of real quantum physical processes in biosystems, say in cells or brains (cf. with biological applications of genuine quantum physical theory Penrose 1989,<ref>Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)</ref> Umezawa 1993,<ref>Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)</ref> Hameroff 1994,<ref>Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)</ref> Vitiello 1995,<ref>Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973</ref> Vitiello 2001,<ref>Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)</ref> Arndt et al., 2009,<ref>Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985</ref> Bernroider and Summhammer 2012,<ref>Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37</ref> Bernroider 2017<ref>Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9</ref>). Quantum-like modeling works from the viewpoint to quantum theory as a measurement theory. This is the original Bohr’s viewpoint that led to ''the Copenhagen interpretation of quantum mechanics'' (see Plotnitsky, 2009<ref>Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009</ref> for detailed and clear presentation of Bohr’s views). One of the main bio-specialties is consideration of ''self-measurements that biosystems perform on themselves.'' In our modeling, the ability to perform self-measurements is considered as the basic feature of biological functions (see Section 8.2 and paper Khrennikov et al., 2018<ref name=":0">Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225</ref>).


''Quantum-like models'' (Khrennikov, 2004b<ref>Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275</ref>) reflect the features of biological processes that naturally match the quantum formalism. In such modeling, it is useful to explore ''quantum information theory,'' which can be applied not just to the micro-world of quantum systems. Generally, systems processing information in the quantum-like manner need not be quantum physical systems; in particular, they can be macroscopic biosystems. Surprisingly, the same mathematical theory can be applied at all biological scales: from proteins, cells and brains to humans and ecosystems; we can speak about ''quantum information biology'' (Asano et al., 2015a<ref name=":1">Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378</ref>).


In quantum-like modeling, quantum theory is considered as calculus for prediction and transformation of probabilities. Quantum probability (QP) calculus (Section 2) differs essentially from classical probability (CP) calculus based on Kolmogorov’s axiomatics (Kolmogorov, 1933<ref name=":2">Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)</ref>). In CP, states of random systems are represented by probability measures and observables by random variables; in QP, states of random systems are represented by normalized vectors in a complex Hilbert space (pure states) or generally by density operators (mixed states).5 Superpositions represented by pure states are used to model uncertainty which is yet unresolved by a measurement. The use of superpositions in biology is illustrated by Fig. 1 (see Section 10 and paper Khrennikov et al., 2018<ref name=":0" /> for the corresponding model). The QP-update resulting from an observation is based on the projection postulate or more general transformations of quantum states — in the framework of theory of quantum instruments (Davies and Lewis, 1970<ref name=":3">Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260</ref>, Davies, 1976<ref name=":4">Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)</ref>, Ozawa, 1984<ref name=":5">Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87</ref>, Yuen, 1987<ref name=":6">Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.</ref>, Ozawa, 1997<ref name=":7">Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137</ref>, Ozawa, 2004<ref name=":8">Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416</ref>, Okamura and Ozawa, 2016<ref name=":9">Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209</ref>) (Section 3).
In questo articolo, presentiamo le applicazioni del formalismo matematico della meccanica quantistica e la sua metodologia per modellare il comportamento dei biosistemi. (c) Gli ultimi anni sono stati caratterizzati da un'esplosione di interesse per le applicazioni della teoria quantistica al di fuori della fisica, in particolare nella psicologia cognitiva, processo decisionale, elaborazione delle informazioni nel cervello, biologia molecolare, genetica ed epigenetica e teoria dell'evoluzione. Chiamiamo i modelli corrispondenti simil-quantistico. Non sono diretti alla modellazione a micro-livello di processi fisici quantistici reali nei biosistemi, ad esempio nelle cellule o nel cervello (cfr. con applicazioni biologiche della teoria fisica quantistica genuina di Penrose 1989,<ref>Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)</ref> Umezawa 1993,<ref>Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)</ref> Hameroff 1994,<ref>Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)</ref> Vitiello 1995,<ref>Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973</ref> Vitiello 2001,<ref>Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)</ref> Arndt et al., 2009,<ref>Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985</ref> Bernroider e Summhammer 2012,<ref>Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37</ref> Bernroider 2017<ref>Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9</ref>). La modellazione quantistica funziona dal punto di vista della teoria quantistica come teoria della misurazione. Questo è il punto di vista originale di Bohr che ha portato all'interpretazione di Copenaghen della meccanica quantistica (vedi Plotnitsky, 2009<ref>Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009</ref> per una presentazione dettagliata e chiara delle opinioni di Bohr). Una delle principali biospecialità è la considerazione delle '''auto-misurazioni''' che i biosistemi effettuano su se stessi. Nella nostra modellizzazione, la capacità di eseguire ''auto-misurazioni'' è considerata la caratteristica di base delle funzioni biologiche (vedi Sezione 8.2 e documento Khrennikov et al., 2018<ref name=":0">Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225</ref>).
[[File:Schrodinger 1.jpeg|left|thumb|Fig. 1. Illustration for quantum-like representation of uncertainty generated by neuron’s action potential (originally published in Khrennikov et al. (2018)).]]
 
We stress that quantum-like modeling elevates the role of convenience and simplicity of quantum representation of states and observables. (We pragmatically ignore the problem of interrelation of CP and QP.) In particular, the quantum state space has the linear structure and linear models are simpler. Transition from classical nonlinear dynamics of electrochemical processes in biosystems to quantum linear dynamics essentially speeds up the state-evolution (Section 8.4). However, in this framework “state” is the quantum information state of a biosystem used for processing of special quantum uncertainty (Section 8.2).
 
I modelli quantistici (Khrennikov, 2004b<ref>Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275</ref>) riflettono le caratteristiche dei processi biologici che corrispondono naturalmente al formalismo quantistico. In tale modellazione, è utile esplorare la '''teoria dell'informazione quantistica''', che può essere applicata non solo al micro-mondo dei sistemi quantistici. In generale, i sistemi che elaborano le informazioni in modo quantistico non devono necessariamente essere sistemi fisici quantistici; in particolare, possono essere biosistemi macroscopici. Sorprendentemente, la stessa teoria matematica può essere applicata a tutte le scale biologiche: dalle proteine, cellule e cervelli all'uomo e agli ecosistemi; possiamo parlare di '''biologia dell'informazione quantistica''' (Asano et al., 2015a<ref name=":1">Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378</ref>).
 
 
Nella modellazione quantistica, la teoria quantistica è considerata come '''calcolo per la previsione e la trasformazione delle probabilità'''. Il calcolo della probabilità quantistica (QP) (Sezione 2) differisce essenzialmente dal calcolo della probabilità classica (CP) basato sull'assiomatica di Kolmogorov (Kolmogorov, 1933<ref name=":2">Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)</ref>). In CP, gli stati dei sistemi casuali sono rappresentati da misure di probabilità e osservabili da variabili casuali; in QP, gli stati dei sistemi casuali sono rappresentati da '''vettori normalizzati''' in uno ''spazio di Hilbert complesso'' (stati puri) o generalmente da ''operatori di densità'' (stati misti). <blockquote>Le sovrapposizioni rappresentate da stati puri sono usate per modellare l'incertezza che non è ancora risolta da una misura. </blockquote>
 
 
L'uso delle sovrapposizioni in biologia è illustrato dalla Fig. 1 (vedi Sezione 10 e documento Khrennikov et al., 2018<ref name=":0" /> per il modello corrispondente). L'aggiornamento QP risultante da un'osservazione si basa sul postulato di proiezione o trasformazioni più generali degli stati quantistici, nel quadro della teoria degli strumenti quantistici (Davies e Lewis, 1970,<ref name=":3">Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260</ref> Davies, 1976,<ref name=":4">Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)</ref> Ozawa, 1984,<ref name=":5">Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87</ref> Yuen, 1987,<ref name=":6">Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.</ref> Ozawa , 1997,<ref name=":7">Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137</ref> Ozawa, 2004,<ref name=":8">Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416</ref> Okamura e Ozawa, 2016<ref name=":9">Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209</ref>) (Sezione 3).
 
[[File:Schrodinger 1.jpeg|left|thumb|'''Figura 1:''' Illustrazione per la rappresentazione quantistica dell'incertezza generata dal potenziale d'azione del neurone (originariamente pubblicata in Khrennikov et al. 2018)]]
Sottolineiamo che la modellazione quantistica eleva il ruolo di convenienza e semplicità della rappresentazione quantistica di stati e osservabili. (Ignoriamo pragmaticamente il problema dell'interrelazione di CP e QP.)  
 
In particolare, lo spazio degli stati quantistici ha la struttura lineare e i modelli lineari sono più semplici. La transizione dalla dinamica classica non lineare dei processi elettrochimici nei biosistemi alla dinamica lineare quantistica accelera essenzialmente l'evoluzione dello stato (Sezione 8.4).  
 
Tuttavia, in questo quadro "stato" è lo stato di informazione quantistica di un biosistema utilizzato per l'elaborazione di un'incertezza quantistica speciale (Sezione 8.2).

Revision as of 19:10, 10 November 2022

Introduction

I metodi matematici standard furono originariamente sviluppati per servire la fisica classica. L'analisi reale servì come base matematica della meccanica newtoniana (Newton, 1687)[1] (e più tardi del formalismo Hamiltoniano); la meccanica statistica classica stimolò l'approccio della teoria della misura alla teoria della probabilità, formalizzata nell'assiomatica di Kolmogorov (Kolmogorov, 1933).[2] Tuttavia, il comportamento dei sistemi biologici differisce essenzialmente dal comportamento dei sistemi meccanici, ad esempio corpi rigidi, molecole di gas o fluidi. Pertanto, sebbene la "matematica classica" svolga ancora il ruolo cruciale nella modellazione biologica, sembra che non possa descrivere completamente la ricca complessità dei biosistemi e le peculiarità del loro comportamento, rispetto ai sistemi meccanici. Sono disponibili nuovi metodi matematici per la modellazione dei biosistemi.(a,b)


In questo articolo, presentiamo le applicazioni del formalismo matematico della meccanica quantistica e la sua metodologia per modellare il comportamento dei biosistemi. (c) Gli ultimi anni sono stati caratterizzati da un'esplosione di interesse per le applicazioni della teoria quantistica al di fuori della fisica, in particolare nella psicologia cognitiva, processo decisionale, elaborazione delle informazioni nel cervello, biologia molecolare, genetica ed epigenetica e teoria dell'evoluzione. Chiamiamo i modelli corrispondenti simil-quantistico. Non sono diretti alla modellazione a micro-livello di processi fisici quantistici reali nei biosistemi, ad esempio nelle cellule o nel cervello (cfr. con applicazioni biologiche della teoria fisica quantistica genuina di Penrose 1989,[3] Umezawa 1993,[4] Hameroff 1994,[5] Vitiello 1995,[6] Vitiello 2001,[7] Arndt et al., 2009,[8] Bernroider e Summhammer 2012,[9] Bernroider 2017[10]). La modellazione quantistica funziona dal punto di vista della teoria quantistica come teoria della misurazione. Questo è il punto di vista originale di Bohr che ha portato all'interpretazione di Copenaghen della meccanica quantistica (vedi Plotnitsky, 2009[11] per una presentazione dettagliata e chiara delle opinioni di Bohr). Una delle principali biospecialità è la considerazione delle auto-misurazioni che i biosistemi effettuano su se stessi. Nella nostra modellizzazione, la capacità di eseguire auto-misurazioni è considerata la caratteristica di base delle funzioni biologiche (vedi Sezione 8.2 e documento Khrennikov et al., 2018[12]).


I modelli quantistici (Khrennikov, 2004b[13]) riflettono le caratteristiche dei processi biologici che corrispondono naturalmente al formalismo quantistico. In tale modellazione, è utile esplorare la teoria dell'informazione quantistica, che può essere applicata non solo al micro-mondo dei sistemi quantistici. In generale, i sistemi che elaborano le informazioni in modo quantistico non devono necessariamente essere sistemi fisici quantistici; in particolare, possono essere biosistemi macroscopici. Sorprendentemente, la stessa teoria matematica può essere applicata a tutte le scale biologiche: dalle proteine, cellule e cervelli all'uomo e agli ecosistemi; possiamo parlare di biologia dell'informazione quantistica (Asano et al., 2015a[14]).


Nella modellazione quantistica, la teoria quantistica è considerata come calcolo per la previsione e la trasformazione delle probabilità. Il calcolo della probabilità quantistica (QP) (Sezione 2) differisce essenzialmente dal calcolo della probabilità classica (CP) basato sull'assiomatica di Kolmogorov (Kolmogorov, 1933[15]). In CP, gli stati dei sistemi casuali sono rappresentati da misure di probabilità e osservabili da variabili casuali; in QP, gli stati dei sistemi casuali sono rappresentati da vettori normalizzati in uno spazio di Hilbert complesso (stati puri) o generalmente da operatori di densità (stati misti).

Le sovrapposizioni rappresentate da stati puri sono usate per modellare l'incertezza che non è ancora risolta da una misura.


L'uso delle sovrapposizioni in biologia è illustrato dalla Fig. 1 (vedi Sezione 10 e documento Khrennikov et al., 2018[12] per il modello corrispondente). L'aggiornamento QP risultante da un'osservazione si basa sul postulato di proiezione o trasformazioni più generali degli stati quantistici, nel quadro della teoria degli strumenti quantistici (Davies e Lewis, 1970,[16] Davies, 1976,[17] Ozawa, 1984,[18] Yuen, 1987,[19] Ozawa , 1997,[20] Ozawa, 2004,[21] Okamura e Ozawa, 2016[22]) (Sezione 3).

Figura 1: Illustrazione per la rappresentazione quantistica dell'incertezza generata dal potenziale d'azione del neurone (originariamente pubblicata in Khrennikov et al. 2018)

Sottolineiamo che la modellazione quantistica eleva il ruolo di convenienza e semplicità della rappresentazione quantistica di stati e osservabili. (Ignoriamo pragmaticamente il problema dell'interrelazione di CP e QP.)

In particolare, lo spazio degli stati quantistici ha la struttura lineare e i modelli lineari sono più semplici. La transizione dalla dinamica classica non lineare dei processi elettrochimici nei biosistemi alla dinamica lineare quantistica accelera essenzialmente l'evoluzione dello stato (Sezione 8.4).

Tuttavia, in questo quadro "stato" è lo stato di informazione quantistica di un biosistema utilizzato per l'elaborazione di un'incertezza quantistica speciale (Sezione 8.2).

  1. Newton Isaac, «Philosophiae naturalis principia mathematica», Benjamin Motte, 1687, London UK». 
  2. Kolmogorov A.N.Grundbegriffe Der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin (1933)
  3. Penrose R. The Emperor’S New Mind Oxford Univ. Press, New-York (1989)
  4. Umezawa H. Advanced Field Theory: Micro, Macro and Thermal Concepts AIP, New York (1993)
  5. Hameroff S. Quantum coherence in microtubules. a neural basis for emergent con- sciousness? J. Cons. Stud., 1 (1994)
  6. Vitiello G. Dissipation and memory capacity in the quantum brain model Internat. J. Modern Phys. B, 9 (1995), p. 973
  7. Vitiello G. My Double Unveiled: The Dissipative Quantum Model of Brain, Advances in Consciousness Research, John Benjamins Publishing Company(2001)
  8. Arndt M., Juffmann T., Vedral V. Quantum physics meets biology HFSP J., 3 (6) (2009), pp. 386-400, 10.2976/1.3244985
  9. Bernroider G., Summhammer J. Can quantum entanglement between ion transition states effect action potential initiation? Cogn. Comput., 4 (2012), pp. 29-37
  10. Bernroider G. Neuroecology: Modeling neural systems and environments, from the quantum to the classical level and the question of consciousness J. Adv. Neurosci. Res., 4 (2017), pp. 1-9
  11. Plotnitsky A. Epistemology and Probability: Bohr, Heisenberg, SchrÖdinger and the Nature of Quantum-Theoretical Thinking Springer, Berlin, Germany; New York, NY, USA (2009
  12. 12.0 12.1 Khrennikov A., Basieva I., PothosE.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225
  13. Khrennikov A. On quantum-like probabilistic structure of mental information Open Syst. Inf. Dyn., 11 (3) (2004), pp. 267-275
  14. Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology Found. Phys., 45 (10) (2015), pp. 1362-1378
  15. Kolmogorov A.N. Grundbegriffe Der Wahrscheinlichkeitsrechnung Springer-Verlag, Berlin (1933)
  16. Davies E.B., Lewis J.T. An operational approach to quantum probability Comm. Math. Phys., 17 (1970), pp. 239-260
  17. Davies E.B. Quantum Theory of Open Systems. Academic Press, London (1976)
  18. Ozawa M. Quantum measuring processes for continuous observables J. Math. Phys., 25 (1984), pp. 79-87
  19. Yuen, H. P., 1987. Characterization and realization of general quantum measurements. M. Namiki and others (ed.) Proc. 2nd Int. Symp. Foundations of Quantum Mechanics, pp. 360–363.
  20. Ozawa M. An operational approach to quantum state reduction Ann. Phys., NY, 259 (1997), pp. 121-137
  21. Ozawa M. Uncertainty relations for noise and disturbance in generalized quantum measurements Ann. Phys., NY, 311 (2004), pp. 350-416
  22. Okamura K., Ozawa M. Measurement theory in local quantum physics J. Math. Phys., 57 (2016), Article 015209