Difference between revisions of "Store:QLMit07"

 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
</math> condizionato al risultato <math display="inline">\text{X}=x
</math> condizionato al risultato <math display="inline">\text{X}=x
</math> della misurazione.
</math> della misurazione.
In general, the statistical properties of any measurement are characterized by
# the output probability distribution <math display="inline">Pr\{\text{x}=x\parallel\rho\}</math>, the probability distribution of the output <math display="inline">x</math> of the measurement in the input state <math display="inline">\rho
</math>;
# the quantum state reduction <math display="inline">\rho\rightarrow\rho_{(X=x)}
</math>,the state change from the input state <math display="inline">\rho
</math>  to the output state <math display="inline">\rho\rightarrow\rho_{(X=x)}
</math> conditional upon the outcome <math display="inline">\text{X}=x
</math> of the measurement.


Nella formulazione di von Neumann, le proprietà statistiche di qualsiasi misura di un osservabile  sono determinate in modo univoco dalla regola di Born (5) e dal postulato della proiezione (6), e sono rappresentate dalla mappa (9), uno strumento di tipo von Neumann. Tuttavia, la formulazione di von Neumann non riflette il fatto che lo stesso  osservabile <math>A</math> rappresentato dall'operatore hermitiano <math>\hat{A}</math> può essere misurato in molti modi.(8) Formalmente, tali schemi di misurazione sono rappresentati da strumenti quantistici.
Nella formulazione di von Neumann, le proprietà statistiche di qualsiasi misura di un osservabile  sono determinate in modo univoco dalla regola di Born (5) e dal postulato della proiezione (6), e sono rappresentate dalla mappa (9), uno strumento di tipo von Neumann. Tuttavia, la formulazione di von Neumann non riflette il fatto che lo stesso  osservabile <math>A</math> rappresentato dall'operatore hermitiano <math>\hat{A}</math> può essere misurato in molti modi.(8) Formalmente, tali schemi di misurazione sono rappresentati da strumenti quantistici.


Consideriamo ora i più semplici strumenti quantistici di tipo non von Neumann, noti come ''strumenti atomici''. Iniziamo ricordando la nozione di POVM (Probability Operator Valued Measure); limitiamo le considerazioni ai POVM con un dominio discreto di definizione <math display="inline">X=\{x_1....,x_N.....\}</math>. POVM è una mappa <math display="inline">x\rightarrow \hat{D}(x)</math> tale che per ogni <math display="inline">x\in X</math>,<math>\hat{D}(x)</math>  è un operatore Hermitiano contrattivo positivo (chiamato ''effetto'') (ovvero <math display="inline">\hat{D}(x)^*=\hat{D}(x), 0\leq \langle\psi|\hat{D}(x)\psi\rangle\leq1</math> o qualsiasi <math display="inline">\psi\in\mathcal{H}</math>) e la condizione di normalizzazione <math display="inline">\sum_x \hat{D}(x)=I</math>
Consideriamo ora i più semplici strumenti quantistici di tipo non von Neumann, noti come ''strumenti atomici''. Iniziamo ricordando la nozione di POVM (Probability Operator Valued Measure); limitiamo le considerazioni ai POVM con un dominio discreto di definizione <math display="inline">X=\{x_1....,x_N.....\}</math>. POVM è una mappa <math display="inline">x\rightarrow \hat{D}(x)</math> tale che per ogni <math display="inline">x\in X</math>,<math>\hat{D}(x)</math>  è un operatore Hermitiano contrattivo positivo (chiamato ''effetto'') (ovvero <math display="inline">\hat{D}(x)^*=\hat{D}(x), 0\leq \langle\psi|\hat{D}(x)\psi\rangle\leq1</math> o qualsiasi <math display="inline">\psi\in\mathcal{H}</math>) e la condizione di normalizzazione <math display="inline">\sum_x \hat{D}(x)=I</math>, dove <math display="inline">I</math> è l'operatore di unità. Si presume che per qualsiasi misurazione, la distribuzione di probabilità di output <math display="inline">Pr\{\text{x}=x||\rho\}</math> sia data da
 
 
Now, we consider the simplest quantum instruments of non von Neumann type, known as ''atomic instruments.'' We start with recollection of the notion of POVM (probability operator valued measure); we restrict considerations to POVMs with a discrete domain of definition <math display="inline">X=\{x_1....,x_N.....\}</math>. POVM is a map <math display="inline">x\rightarrow \hat{D}(x)</math> such that for each <math display="inline">x\in X</math>,<math>\hat{D}(x)</math>  is a positive contractive Hermitian operator (called effect) (i.e.,<math display="inline">\hat{D}(x)^*=\hat{D}(x), 0\leq \langle\psi|\hat{D}(x)\psi\rangle\leq1</math> or any <math display="inline">\psi\in\mathcal{H}</math>), and the normalization condition
 
<math display="inline">\sum_x \hat{D}(x)=I</math>, dove <math display="inline">I</math> è l'operatore di unità. Si presume che per qualsiasi misurazione, la distribuzione di probabilità di output <math display="inline">Pr\{\text{x}=x||\rho\}</math> sia data da
 
{| width="80%" |
{| width="80%" |
|-
|-

Latest revision as of 11:48, 11 April 2023

3.3. Aggiornamento dello stato non proiettivo: strumenti atomici

In generale, le proprietà statistiche di qualsiasi misurazione sono caratterizzate da:

  1. la distribuzione di probabilità dell'output , la distribuzione di probabilità dell'output  della misurazione nello stato di input
  2. la riduzione dello stato quantico , il cambiamento di stato dallo stato di ingresso  allo stato di uscita condizionato al risultato della misurazione.

Nella formulazione di von Neumann, le proprietà statistiche di qualsiasi misura di un osservabile  sono determinate in modo univoco dalla regola di Born (5) e dal postulato della proiezione (6), e sono rappresentate dalla mappa (9), uno strumento di tipo von Neumann. Tuttavia, la formulazione di von Neumann non riflette il fatto che lo stesso osservabile rappresentato dall'operatore hermitiano può essere misurato in molti modi.(8) Formalmente, tali schemi di misurazione sono rappresentati da strumenti quantistici.

Consideriamo ora i più semplici strumenti quantistici di tipo non von Neumann, noti come strumenti atomici. Iniziamo ricordando la nozione di POVM (Probability Operator Valued Measure); limitiamo le considerazioni ai POVM con un dominio discreto di definizione . POVM è una mappa tale che per ogni ,  è un operatore Hermitiano contrattivo positivo (chiamato effetto) (ovvero o qualsiasi ) e la condizione di normalizzazione , dove è l'operatore di unità. Si presume che per qualsiasi misurazione, la distribuzione di probabilità di output sia data da

 


dove  è un POVM. Per gli strumenti atomici si presume che gli effetti siano rappresentati concretamente nella forma

 


dove è un operatore lineare in . Quindi, la condizione di normalizzazione ha la forma .(9) La regola Born può essere scritta in modo simile a (5):

 

Si presume che la trasformazione dello stato post-misurazione sia basata sulla mappa:

*

quindi la riduzione dello stato quantico è data da

 *


La mappa data da (13) è uno strumento quantistico atomico. Osserviamo che la regola di Born (12) può essere scritta nella forma

  * f


Sia un operatore Hermitiano in . Considera un POVM con il dominio di definizione dato dallo spettro di . Questo POVM rappresenta una misura di osservabile se vale la regola di Born:

 


Pertanto, in linea di principio, le probabilità dei risultati sono ancora codificate nella scomposizione spettrale dell'operatore o in altre parole gli operatori dovrebbero essere selezionati in modo tale da generare le probabilità corrispondenti alla scomposizione spettrale della rappresentazione simbolica delle osservabili , ovvero, è univocamente determinato da come .

Possiamo dire che questo operatore contiene solo informazioni sulle probabilità dei risultati, contrariamente allo schema di von Neumann, l'operatore non codifica la regola dell'aggiornamento dello stato. Per uno strumento atomico, le misurazioni dell'osservabile hanno l'unica distribuzione di probabilità di output secondo la regola di Born (16), ma hanno molte diverse riduzioni dello stato quantico a seconda della scomposizione dell'effetto in modo tale che