Difference between revisions of "Store:QLMen09"

(Created page with "==4. Quantum instruments from the scheme of indirect measurements== The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of me...")
 
Tags: Mobile web edit Mobile edit Visual edit
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
==4. Quantum instruments from the scheme of indirect measurements==
==4. Instrumentos cuánticos del esquema de medidas indirectas.==
The basic model for construction of quantum instruments is based on the scheme of indirect measurements. This scheme formalizes the following situation: measurement’s outputs are generated via interaction of a system <math>S</math> with a measurement apparatus <math>M</math> . This apparatus consists of a complex physical device interacting with <math>S</math> and a pointer that shows the result of measurement, say spin up or spin down. An observer can see only outputs of the pointer and he associates these outputs with the values of the observable <math>A</math> for the system <math>S</math>. Thus, the indirect measurement scheme involves:
El modelo básico para la construcción de instrumentos cuánticos se basa en el esquema de medidas indirectas. Este esquema formaliza la siguiente situación: los resultados de la medición se generan a través de la interacción de un sistema <math>S</math> con un aparato de medida <math>M</math> .Este aparato consiste en un dispositivo físico complejo que interactúa con <math>S</math> y un puntero que muestra el resultado de la medición, digamos girar hacia arriba o hacia abajo. Un observador solo puede ver las salidas del puntero y asocia estas salidas con los valores del observable.<math>A</math> para el sistema <math>S</math>.Así, el esquema de medición indirecta implica:


# the states of the systems <math>S</math> and the apparatus <math>M</math>
# los estados del sistemas <math>S</math> y el aparato <math>M</math>
# the operator  <math>U</math> representing the interaction-dynamics for the system <math>S+M</math>
# El operador <math>U</math> representando la dinámica de interacción para el sistema <math>S+M</math>
# the meter observable <math>M_A</math> giving outputs of the pointer of the apparatus <math>M</math>.
# el metro observable <math>M_A</math> dando salidas del puntero del aparato <math>M</math>.


An ''indirect measurement model'', introduced in Ozawa (1984) as a “(general) measuring process”, is a quadruple  
Un modelo de medición indirecta, introducido en Ozawa (1984)<ref name=":Ozawa M (1984)">Ozawa M. Quantum measuring processes for continuous observables. J. Math. Phys., 25 (1984), pp. 79-87. Google Scholar</ref> como un "proceso de medición (general)", es un cuádruple  


<math>(H,\sigma,U,M_A)</math>  
<math>(H,\sigma,U,M_A)</math>  


consisting of a Hilbert space <math>\mathcal{H}</math> , a density operator <math>\sigma\in S(\mathcal{H})</math>, a unitary operator  <math>U</math> on the tensor product of the state spaces of  <math>S</math> and<math>M,U:\mathcal{H}\otimes\mathcal{H}\rightarrow \mathcal{H}\otimes\mathcal{H}</math> and a Hermitian operator <math>M_A</math> on <math>\mathcal{H}</math> . By this measurement model, the Hilbert space <math>\mathcal{H}</math> describes the states of the apparatus <math>M</math>, the unitary operator <math>U</math> describes the time-evolution of the composite system <math>S+M</math>, the density operator <math>\sigma</math> describes the initial state of the apparatus <math>M</math> , and the Hermitian operator <math>M_A</math> describes the meter observable of the apparatus <math>M</math>. Then, the output probability distribution <math>Pr\{A=x\|\sigma\}</math> in the system state <math>\sigma\in S(\mathcal{H})</math> is given by
que consta de un espacio de Hilbert <math>\mathcal{H}</math> ,un operador de densidad <math>\sigma\in S(\mathcal{H})</math>, Un operador unitario  <math>U</math>sobre el producto tensorial de los espacios de estado de  <math>S</math> y <math>M,U:\mathcal{H}\otimes\mathcal{H}\rightarrow \mathcal{H}\otimes\mathcal{H}</math>y un operador hermitiano <math>M_A</math> on <math>\mathcal{H}</math> . Por este modelo de medida, el espacio de Hilbert <math>\mathcal{H}</math>describe los estados del aparato <math>M</math>, El operador unitario <math>U</math> describe la evolución temporal del sistema compuesto <math>S+M</math>, El operador de densidad <math>\sigma</math> describe el estado inicial del aparato <math>M</math> , y el operador hermitiano <math>M_A</math> describe el metro observable del aparato <math>M</math>. Entonces, la distribución de probabilidad de salida.  <math>Pr\{A=x\|\sigma\}</math>en el estado del sistema <math>\sigma\in S(\mathcal{H})</math> es dado por


{| width="80%" |
{| width="80%" |
Line 20: Line 20:
|}
|}


where <math>E^{M_{A}}(x)</math> is the spectral projection of <math>M_A</math> for the eigenvalue <math>x</math>.
dónde <math>E^{M_{A}}(x)</math> es la proyección espectral de <math>M_A</math> para el valor propio <math>x</math>.


The change of the state <math>\sigma</math> of the system <math>S</math> caused by the measurement for the outcome  <math>A=x</math> is represented with the aid of the map <math>\Im_A(x)</math> in the space of density operators defined as
El cambio de estado <math>\sigma</math> del sistema <math>S</math> causado por la medición para el resultado <math>A=x</math> se representa con la ayuda del mapa <math>\Im_A(x)</math>en el espacio de operadores de densidad definidos como


{| width="80%" |
{| width="80%" |
Line 32: Line 32:
|}
|}


where <math>Tr_\mathcal{H}</math> is the partial trace over <math>\mathcal{H}</math> . Then, the map  <math>x\rightarrow\Im_A(x)</math>turn out to be a quantum instrument. Thus, the statistical properties of the measurement realized by any indirect measurement model <math>(H,\sigma,U,M_A)</math> is described by a quantum measurement. We remark that conversely any quantum instrument can be represented via the indirect measurement model (Ozawa, 1984). Thus, quantum instruments mathematically characterize the statistical properties of all the physically realizable quantum measurements.
dónde <math>Tr_\mathcal{H}</math>es la traza parcial sobre <math>\mathcal{H}</math> . Entonces, el mapa <math>x\rightarrow\Im_A(x)</math> resultar ser un instrumento cuántico. Así, las propiedades estadísticas de la medida realizada por cualquier modelo de medida indirecta <math>(H,\sigma,U,M_A)</math>se describe mediante una medida cuántica. Resaltamos que, a la inversa, cualquier instrumento cuántico puede representarse mediante el modelo de medición indirecta (Ozawa, 1984).<ref name=":Ozawa M (1984)">Ozawa M. Quantum measuring processes for continuous observables. J. Math. Phys., 25 (1984), pp. 79-87. Google Scholar</ref>Así, los instrumentos cuánticos caracterizan matemáticamente las propiedades estadísticas de todas las medidas cuánticas físicamente realizables.

Latest revision as of 14:54, 29 April 2023

4. Instrumentos cuánticos del esquema de medidas indirectas.

El modelo básico para la construcción de instrumentos cuánticos se basa en el esquema de medidas indirectas. Este esquema formaliza la siguiente situación: los resultados de la medición se generan a través de la interacción de un sistema con un aparato de medida .Este aparato consiste en un dispositivo físico complejo que interactúa con  y un puntero que muestra el resultado de la medición, digamos girar hacia arriba o hacia abajo. Un observador solo puede ver las salidas del puntero y asocia estas salidas con los valores del observable. para el sistema .Así, el esquema de medición indirecta implica:

  1. los estados del sistemas y el aparato
  2. El operador  representando la dinámica de interacción para el sistema
  3. el metro observable  dando salidas del puntero del aparato .

Un modelo de medición indirecta, introducido en Ozawa (1984)[1] como un "proceso de medición (general)", es un cuádruple

que consta de un espacio de Hilbert ,un operador de densidad , Un operador unitario  sobre el producto tensorial de los espacios de estado de   y y un operador hermitiano  on . Por este modelo de medida, el espacio de Hilbert describe los estados del aparato , El operador unitario  describe la evolución temporal del sistema compuesto , El operador de densidad  describe el estado inicial del aparato , y el operador hermitiano  describe el metro observable del aparato . Entonces, la distribución de probabilidad de salida. en el estado del sistema  es dado por

 

dónde  es la proyección espectral de  para el valor propio .

El cambio de estado  del sistema  causado por la medición para el resultado  se representa con la ayuda del mapa en el espacio de operadores de densidad definidos como

 

dónde es la traza parcial sobre . Entonces, el mapa  resultar ser un instrumento cuántico. Así, las propiedades estadísticas de la medida realizada por cualquier modelo de medida indirecta se describe mediante una medida cuántica. Resaltamos que, a la inversa, cualquier instrumento cuántico puede representarse mediante el modelo de medición indirecta (Ozawa, 1984).[1]Así, los instrumentos cuánticos caracterizan matemáticamente las propiedades estadísticas de todas las medidas cuánticas físicamente realizables.

  1. 1.0 1.1 Ozawa M. Quantum measuring processes for continuous observables. J. Math. Phys., 25 (1984), pp. 79-87. Google Scholar