Difference between revisions of "Store:EEMIen02"

Tags: Reverted Visual edit
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=== Introduzione ===
=== Introduction ===
Una questione importante ma eccezionalmente innovativa nella neuroscienza cognitiva contemporanea è la comprensione delle proprietà organizzative dell'attività neurale. Ad esempio, esiste una struttura fondamentale per i modelli spazio-temporali dell'attività cerebrale neurale in condizioni diverse? Un approccio comune utilizzato per rispondere a questa domanda è quello di esaminare il cervello a "riposo". Misure come la connettività funzionale, l'analisi dei componenti indipendenti e le metriche teoriche dei grafici sono state applicate ai dati registrati utilizzando diverse tecniche di imaging (ad esempio, risonanza magnetica funzionale (fMRI) ed elettroencefalografia (EEG)), per raggruppare aree cerebrali che mostrano schemi di attività simili. Numerosi studi hanno dimostrato che l'attività cerebrale a "riposo" può essere raggruppata in reti distinte;<ref>{{cita libro  
An important but outstanding issue in contemporary cognitive neuroscience is understanding the organizational properties of neural activity. For instance, is there a fundamental structure to the spatial–temporal patterns neural brain activity across different conditions? One common approach used to address this question is to examine the brain at “rest”. Measures such as functional connectivity, independent component analysis and graph theoretic metrics, have been applied to data recorded using different imaging techniques (e.g., functional magnetic resonance imaging (fMRI) and electroencephalography (EEG)), to cluster brain areas that exhibit similar activity patterns. Numerous studies have shown that brain activity during “rest” can be grouped into distinct networks across<ref>{{cita libro  
  | autore = Biswal B
  | autore = Biswal B
  | autore2 = Zerrin Yetkin F
  | autore2 = Zerrin Yetkin F
Line 23: Line 23:
  | autore2 = Womelsdorfb T
  | autore2 = Womelsdorfb T
  | autore3 = Allenc EA
  | autore3 = Allenc EA
  | autore4 = Bandettinie PA
  | autore4 = Bandettini PA
  | autore5 = Calhound VD
  | autore5 = Calhound VD
  | autore6 = Corbetta M
  | autore6 = Corbetta M
Line 46: Line 46:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> come reti sensoriali (visive e uditive), modalità predefinita, esecutiva ed attenzionale (ventrale e dorsale) che sono state riprodotte in modo affidabile tra migliaia di partecipanti<ref>{{cita libro  
  }}</ref>; such as sensory (visual and auditory), default mode, executive, salience, and attentional (ventral and dorsal) networks that have been reliably reproduced across thousands of participants<ref>{{cita libro  
  | autore = Eickhoff SB
  | autore = Eickhoff SB
  | autore2 = Yeo BTT
  | autore2 = Yeo BTT
Line 64: Line 64:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> e sono predittive di misure fenotipiche come la cognitività e le diagnosi cliniche.<ref>{{cita libro  
  }}</ref>, and are predictive of phenotypic measures like cognition and clinical diagnoses<ref>{{cita libro  
  | autore = Dajani DR
  | autore = Dajani DR
  | autore2 = Burrows CA
  | autore2 = Burrows CA
Line 86: Line 86:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref><ref>Uddin LQ, Karlsgodt KH. Future directions for examination of brain networks in neurodevelopmental disorders. J. Clin. Child Adolesc. Psychol. 2018;47:483–497. doi: 10.1080/15374416.2018.1443461. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>Sripada C, et al. Prediction of neurocognition in youth from resting state fMRI. Mol. Psychiatry. 2020;25:3413–3421. doi: 10.1038/s41380-019-0481-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Questi risultati suggeriscono che queste reti potrebbero essere un aspetto intrinseco dell'attività neurale.
  }}</ref><ref>{{cita libro
| autore = Uddin LQ
| autore2 = Karlsgodt KH
| titolo = Future directions for examination of brain networks in neurodevelopmental disorders
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842321/pdf/nihms-987272.pdf
| volume =
| opera = J Clin Child Adolesc Psychol
| anno = 2018
| editore = Society of Clinical Child & Adolescent Psychology
| città =
| ISBN =
| DOI = 10.1080/15374416.2018.1443461
| PMID = 29634380
| PMCID = PMC6842321
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref><ref>{{cita libro
| autore = Sripada C
| autore2 = Rutherford S
| autore3 = Angstadt M
| autore4 = Thompson WK
| autore5 = Luciana M
| autore6 = Weigard A
| autore7 = Hyde LH
| author8 = Heitzeg M
| titolo = Prediction of neurocognition in youth from resting state fMRI
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7055722/pdf/nihms-1562740.pdf
| volume =
| opera = Mol Psychiatry
| anno = 2020
| editore =
| città =
| ISBN =
| DOI = 10.1038/s41380-019-0481-6
| PMID = 31427753
| PMCID = PMC7055722
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref>. These results suggest these networks may be an intrinsic aspect of neural activity.

Latest revision as of 09:19, 14 August 2023

Introduction

An important but outstanding issue in contemporary cognitive neuroscience is understanding the organizational properties of neural activity. For instance, is there a fundamental structure to the spatial–temporal patterns neural brain activity across different conditions? One common approach used to address this question is to examine the brain at “rest”. Measures such as functional connectivity, independent component analysis and graph theoretic metrics, have been applied to data recorded using different imaging techniques (e.g., functional magnetic resonance imaging (fMRI) and electroencephalography (EEG)), to cluster brain areas that exhibit similar activity patterns. Numerous studies have shown that brain activity during “rest” can be grouped into distinct networks across[1][2]; such as sensory (visual and auditory), default mode, executive, salience, and attentional (ventral and dorsal) networks that have been reliably reproduced across thousands of participants[3], and are predictive of phenotypic measures like cognition and clinical diagnoses[4][5][6]. These results suggest these networks may be an intrinsic aspect of neural activity.

  1. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS, «Functional connectivity in the motor cortex of resting human brain using echo-planar MRI», in Magn Reson Med, 1995».
    PMID:8524021
    DOI:10.1002/mrm.1910340409 
  2. Hutchison RM, Womelsdorfb T, Allenc EA, Bandettini PA, Calhound VD, Corbetta M, Della Penna S, «Dynamic functional connectivity: Promise, issues, and interpretations», in Neuroimage, 2013».
    PMID:23707587 - PMCID:PMC3807588
    DOI:10.1016/j.neuroimage.2013.05.079 
  3. Eickhoff SB, Yeo BTT, Genon S, «Imaging-based parcellations of the human brain», in Nat Rev Neurosci, 2018».
    PMID:30305712
    DOI:10.1038/s41583-018-0071-7 
  4. Dajani DR, Burrows CA, Odriozola P, Baez A, Nebel MB, Mostofsky SH, Uddin LQ, «Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders», in NeuroImage Clin, 2019».
    PMID:30708240 - PMCID:PMC6356009
    DOI:10.1016/j.nicl.2019.101678 
  5. Uddin LQ, Karlsgodt KH, «Future directions for examination of brain networks in neurodevelopmental disorders», in J Clin Child Adolesc Psychol, Society of Clinical Child & Adolescent Psychology, 2018».
    PMID:29634380 - PMCID:PMC6842321
    DOI:10.1080/15374416.2018.1443461 
  6. Sripada C, Rutherford S, Angstadt M, Thompson WK, Luciana M, Weigard A, Hyde LH, «Prediction of neurocognition in youth from resting state fMRI», in Mol Psychiatry, 2020».
    PMID:31427753 - PMCID:PMC7055722
    DOI:10.1038/s41380-019-0481-6