Difference between revisions of "The logic of medical language - fr"

Line 307: Line 307:
Rien et tout, comme nous le vérifierons mieux à la fin des chapitres sur la logique du langage médical ; mais nous allons maintenant consacrer un peu de temps aux concepts de cryptage et de décryptage. On en a peut-être entendu parler dans les films d'espionnage ou dans la sécurité de l'information, mais ils sont importants aussi en médecine, vous verrez.
Rien et tout, comme nous le vérifierons mieux à la fin des chapitres sur la logique du langage médical ; mais nous allons maintenant consacrer un peu de temps aux concepts de cryptage et de décryptage. On en a peut-être entendu parler dans les films d'espionnage ou dans la sécurité de l'information, mais ils sont importants aussi en médecine, vous verrez.


==Encryption==
==Chiffrement==
Let us continue with our example:
Continuons avec notre exemple :


Let us take a common encryption and decryption platform. In the following example we will report the results of an Italian platform but we can choose any platform because the results conceptually do not change:
Prenons une plate-forme commune de chiffrement et de déchiffrement. Dans l'exemple suivant, nous rapporterons les résultats d'une plate-forme italienne, mais nous pouvons choisir n'importe quelle plate-forme car les résultats conceptuellement ne changent pas :


You type your message in plain text, the machine converts it into something unreadable, but anyone knowing the "code" will be able to understand it.  
Vous tapez votre message en texte brut, la machine le convertit en quelque chose d'illisible, mais toute personne connaissant le "code" pourra le comprendre.  


Let us suppose, then, that the same happens when the brain sends a message in its own machine language, made up of wave trains, packets of ionic fields and so on; and that carries a message with it to decrypt the ‘Ephaptic’ code.
Supposons donc qu'il en soit de même lorsque le cerveau envoie un message dans son propre langage machine, composé de trains d'ondes, de paquets de champs ioniques, etc. et qui porte un message avec lui pour déchiffrer le code « éphaptique ».


This message from the Central Nervous System must first be transduced into verbal language, to allow the patient to give meaning to the linguistic expression and the doctor to interpret the verbal message. In this way, however, the machine message is polluted by the linguistic expression: both by the patient, who is unable to convert the encrypted message with the exact meaning (epistemic vagueness), and by the doctor, because he/she is conditioned by the specific context of his/her specialization.
Ce message du Système Nerveux Central doit d'abord être transduit en langage verbal, pour permettre au patient de donner du sens à l'expression linguistique et au médecin d'interpréter le message verbal. De cette façon, cependant, le message de la machine est pollué par l'expression linguistique : à la fois par le patient, qui est incapable de convertir le message crypté avec le sens exact (flou épistémique), et par le médecin, car il est conditionné par le contexte spécifique de sa spécialisation.


The patient, actually, by reporting a symptomatology of orofacial pain in the region of the temporoandibular joint, virtually combines the set of ''extension'' and ''intention'' into a diagnostic concept that allows the dentist to formulate the diagnosis of orofacial pain from temporomandibular disorders. (TMDs).
Le patient, en effet, en rapportant une symptomatologie de douleur orofaciale dans la région de l'articulation temporo-andibulaire, combine virtuellement l'ensemble de l''<nowiki/>'extension'' et de l'''intention'' dans un concept diagnostique qui permet au dentiste de formuler le diagnostic de douleur orofaciale à partir de troubles temporo-mandibulaires. (TMD).


Very often the message remains encrypted at least until the system is damaged to such an extent that clinical signs and symptoms emerge so striking that, obviously, they facilitate the diagnosis.
Très souvent, le message reste crypté au moins jusqu'à ce que le système soit endommagé à un point tel que des signes cliniques et des symptômes apparaissent si frappants qu'ils facilitent évidemment le diagnostic.


Understanding how the encryption works is quite simple (go to decryption platform chooses and to try it out):
Comprendre comment fonctionne le cryptage est assez simple (allez sur la plateforme de décryptage choisit et pour l'essayer):
#choose an encryption key among those selected;
#choisir une clé de chiffrement parmi celles sélectionnées ;
#type a word;
#tapez un mot ;
#get a code corresponding to the chosen key and the typed word.
#obtenir un code correspondant à la clé choisie et au mot tapé.


For example, if we insert the word ‘Ephaptic’ in the platform encryption system, we will have an encrypted code in the three different contexts (patient, dentist and neurologist) which correspond to the three different algorithmic keys indicated by the  program, for instance: the A key corresponds to the patient's algorithm, the B key to the dental context and the C key to the neurological context.
Par exemple, si nous insérons le mot 'Ephaptic' dans le système de cryptage de la plateforme, nous aurons un code crypté dans les trois contextes différents (patient, dentiste et neurologue) qui correspondent aux trois clés algorithmiques différentes indiquées par le programme, par exemple : la touche A correspond à l'algorithme du patient, la touche B au contexte dentaire et la touche C au contexte neurologique.


In the case of the patient, for example, writing <code>Ephaptic</code> and using the A key, the "machine" will give us back a code like
Dans le cas du patient, par exemple, en écrivant <code>Ephaptic</code> et en utilisant la touche A, la "machine" nous rendra un code comme




Line 336: Line 336:




The key can be defined as "Real context".   
La clé peut être définie comme "Contexte réel".   


{{q4|<!--117-->Why do you say that the patient's "key" is defined as the REAL one?|<!--118-->difficult answer, but please observe the Gate Control phenomenon and you will understand}}
{{q4|<!--117-->Pourquoi dites-vous que la « clé » du patient est définie comme la VRAIE ?|<!--118-->réponse difficile, mais veuillez observer le phénomène Gate Control et vous comprendrez}}


First of all: Only the patient is unconsciously aware of the disease that afflicts his own system, but he does not have the ability to transduce the signal from the machine language to the verbal language. The same procedure occurs in 'Systems Control Theory', in which a dynamic control procedure called ‘State Observer’ is designed to estimate the state of the system from output measurements. Matter of fact, in the control theory, observability is a measure of how much the internal state of a system can be deduced from the knowledge of its external outputs<ref>[[wikipedia:Observability|Osservability]] </ref>. While in the case of a biological system a ‘Stochastic Observability’ of linear dynamic systemsis preferred<ref>{{cita libro  
Tout d'abord : Seul le patient est inconsciemment conscient de la maladie qui afflige son propre système, mais il n'a pas la capacité de transduire le signal du langage machine au langage verbal. La même procédure se produit dans la « théorie du contrôle des systèmes », dans laquelle une procédure de contrôle dynamique appelée « observateur d'état » est conçue pour estimer l'état du système à partir des mesures de sortie. En fait, dans la théorie du contrôle, l'observabilité est une mesure de la mesure dans laquelle l'état interne d'un système peut être déduit de la connaissance de ses sorties externes.<ref>[[wikipedia:Observability|Osservability]] </ref>. Alors que dans le cas d'un système biologique, une "observabilité stochastique" des systèmes dynamiques linéaires est préférée<ref>{{cita libro  
  | autore = Chen HF
  | autore = Chen HF
  | titolo = On stochastic observability and controllability
  | titolo = On stochastic observability and controllability
Line 355: Line 355:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>, the Gramian matrices are used for the stochastic observability of nonlinear systems<ref>[[wikipedia:Controllability_Gramian|Controllability Gramian]]</ref><ref>{{cita libro  
  }}</ref>, les matrices de Gramian sont utilisées pour l'observabilité stochastique du système non linéaires<ref>[[wikipedia:Controllability_Gramian|Controllability Gramian]]</ref><ref>{{cita libro  
  | autore = Powel ND
  | autore = Powel ND
  | autore2 = Morgansen KA
  | autore2 = Morgansen KA
Line 373: Line 373:
  }}</ref>.
  }}</ref>.


This would already be enough to bring now our attention on an extraordinarily explanatory phenomenon called ''Gate Control''. If a child gets hit in the leg while playing soccer, in addition to crying, the first thing he does is to rub extensively the painful area so that the pain decreases. The child does not know the ‘Gate Control’, but unconsciously activates an action that, by stimulating the tactile receptors, closes the gate at the entrance of the nociceptive input of the C fibres, consequently decreasing the pain; the phenomenon was discovered only in 1965 by Ronald Melzack and Patrick Wall<ref>{{cita libro  
Cela suffirait déjà à attirer maintenant notre attention sur un phénomène extraordinairement explicatif appelé ''Gate Control''. Si un enfant se fait frapper à la jambe en jouant au soccer, en plus de pleurer, la première chose qu'il fait est de frotter abondamment la zone douloureuse afin que la douleur diminue. L'enfant ne connaît pas le "Gate Control", mais active inconsciemment une action qui, en stimulant les récepteurs tactiles, ferme la porte à l'entrée de l'entrée nociceptive des fibres C, diminuant ainsi la douleur ; le phénomène n'a été découvert qu'en 1965 par Ronald Melzack et Patrick Wall<ref>{{cita libro  
  | autore = Melzack R
  | autore = Melzack R
  | titolo =  The McGill Pain Questionnaire: major properties and scoring methods  
  | titolo =  The McGill Pain Questionnaire: major properties and scoring methods  
Line 452: Line 452:
  }}</ref>.
  }}</ref>.


As much as in computers, encryption-decryption also takes place in biology. In fact, in a recent research the authors examined the influence of molecular mechanisms of the ‘long-term potentiation’ (LTP) phenomenon in the hippocampus on the functional importance of synaptic plasticity for storage of information and the development of neuronal connectivity. It is not yet clear if the activity modifies the strength of the single synapses in a digital ('''01''', all or nothing) or analog (graduated) way. In the study it emerges that individual synapses appear to have an 'all or nothing' enhancement, indicative of highly cooperative processes, but different thresholds for undergoing enhancement. These findings raise the possibility that some forms of synaptic memory may be digitally stored in the brain<ref>{{cite book  
Autant que dans les ordinateurs, le chiffrement-déchiffrement a aussi lieu en biologie. En fait, dans une recherche récente, les auteurs ont examiné l'influence des mécanismes moléculaires du phénomène de « potentialisation à long terme » (LTP) dans l'hippocampe sur l'importance fonctionnelle de la plasticité synaptique pour le stockage de l'information et le développement de la connectivité neuronale. Il n'est pas encore clair si l'activité modifie la force des synapses individuelles de manière numérique ('''01''', tout ou rien) ou analogique (graduée). Dans l'étude, il ressort que les synapses individuelles semblent avoir une amélioration «tout ou rien», indiquant des processus hautement coopératifs, mais des seuils différents pour subir une amélioration. Ces découvertes soulèvent la possibilité que certaines formes de mémoire synaptique puissent être stockées numériquement dans le cerveau<ref>{{cite book  
  | autore = Petersen C
  | autore = Petersen C
  | autore2 = Malenka RC
  | autore2 = Malenka RC
Editor, Editors, USER, editor, translator
5,845

edits