Editor, Editors, USER, editor, translator
5,845
edits
(Created page with "Zusätzlich zur Interpretation seines Zustands sollte dieses System von außen stimuliert werden, um die evozierte Reaktion zu analysieren, wie es für indeterministische Systeme typisch ist") |
(Created page with "Das Ende der Forschung kam aufgrund fehlender wissenschaftlicher und klinischer Validierung zur Eliminierung einer Reihe instrumenteller diagnostischer Methoden wie Interferenz-Elektromyographie (EMG-Interferenzmuster), Pantographie, Röntgendiagnostik usw") |
||
Line 430: | Line 430: | ||
}}</ref> oder Das Einsetzen der Bissebene in den Kiefer ist mit erhöhten Cortisolspiegeln im Urin und erhöhten Corticosteronspiegeln im Plasma verbunden, was darauf hindeutet, dass okklusale Disharmonie auch eine Stressquelle ist. | }}</ref> oder Das Einsetzen der Bissebene in den Kiefer ist mit erhöhten Cortisolspiegeln im Urin und erhöhten Corticosteronspiegeln im Plasma verbunden, was darauf hindeutet, dass okklusale Disharmonie auch eine Stressquelle ist. | ||
Zur Stützung dieser Annahme zeigen SAMP8-Mäuse mit Lerndefiziten einen deutlichen Anstieg der Plasmaspiegel von Corticosteron<ref name="ICHI2" /> und | Zur Stützung dieser Annahme zeigen SAMP8-Mäuse mit Lerndefiziten einen deutlichen Anstieg der Plasmaspiegel von Corticosteron<ref name="ICHI2" /> und Subregulation von GR und GRmRNA des Hippocampus. Die okklusale Disharmonie beeinflusst auch die katecholaminerge Aktivität. Der abwechselnde Verschluss des Bisses durch Einsetzen einer Acrylbissschiene an den unteren Schneidezähnen führt zu einem Anstieg der Dopamin- und Noradrenalinspiegel im Hypothalamus und im frontalen Cortex<ref name="ARESO" /><ref>{{Cite book | ||
| autore = Gómez FM | | autore = Gómez FM | ||
| autore2 = Areso MP | | autore2 = Areso MP | ||
Line 450: | Line 450: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, und Abnahmen von Thyroxinaydroxylase, GTP-Cyclohydrochlorid und immunreaktivem Serotonin in der Großhirnrinde und im Nucleus caudatus, in der Nigra-Substanz, im Locus ceruleus und im dorsalen Raphe-Nucleus, die chronischen stressinduzierten Veränderungen ähneln.<ref>{{Cite book | ||
| autore = Feldman S | | autore = Feldman S | ||
| autore2 = Weidenfeld J | | autore2 = Weidenfeld J | ||
Line 467: | Line 467: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> Diese durch okklusale Disharmonien induzierten Veränderungen im katekolaminergen und serotonergen System wirken sich eindeutig auf die Innervation des Hippocampus aus. Die Bedingungen der Erhöhung der vertikalen Dimension verändern die Neurogenese und führen zu Apoptose im ippocampalen Gyrus, indem sie die Expression des ippocampalen Gehirns, die von neurotrophen Faktoren stammt, verringern: All dies könnte zu den Veränderungen beim beobachteten Lernen bei Tieren mit okklusaler Disharmonie beitragen.<ref name="MFCF" /> | ||
=== | ===Hirnstamm und Kauen=== | ||
[[File:Segmentazione Trigeminale.jpg|left|thumb|500px|''' | [[File:Segmentazione Trigeminale.jpg|left|thumb|500px|'''Abbildung 2:''' Segmentierung des Trigeminusnervensystems]] | ||
Der Hirnstammbezirk ist ein Relaisbereich, der die oberen Zentren des Gehirns, das Kleinhirn und das Rückenmark verbindet und die wichtigste sensorische und motorische Innervation von Gesicht, Kopf und Hals durch die Hirnnerven bereitstellt. | |||
Dies spielt eine entscheidende Rolle bei der Regulierung von Atmung, Fortbewegung, Körperhaltung, Gleichgewicht, Erregung (einschließlich Darmkontrolle, Blase, Blutdruck und Herzfrequenz).. Es ist für die Regulierung zahlreicher Reflexe verantwortlich, darunter Schlucken, Husten und Erbrechen. Der Hirnstamm wird von höheren zerebralen Zentren aus kortikalen und subkortikalen Regionen gesteuert, einschließlich der Basalganglienkerne und des Zwischenhirns, sowie von Rückkopplungsschleifen aus dem Kleinhirn und dem Rückenmark. Neuromodulation kann durch den „klassischen“ Modus von glutamatergen Neurotransmittern und GABA (Gamma-Aminobuttersäure) durch eine primäre Erregung und Hemmung des „anatomischen Netzwerks“ erreicht werden, kann aber auch durch die Verwendung von Botenstoffen erreicht werden, die auf G-Proteine wirken. Zu diesen Neuromodulatoren gehören das Monoamin (Serotonin, Noradrenalin und Dopamin) Acetylcholin sowie Glutamat und GABA. Darüber hinaus wirken nicht nur Neuropeptide und Purine als Neuromodulatoren, sondern auch andere chemische Mediatoren, wie Wachstumsfaktoren, die ähnliche Wirkungen haben könnten.<ref>{{Cite book | |||
| autore = Mascaro MB | | autore = Mascaro MB | ||
| autore2 = Prosdócimi FC | | autore2 = Prosdócimi FC | ||
Line 494: | Line 494: | ||
}}</ref> | }}</ref> | ||
Das oben beschriebene neuronale Netzwerk endet nicht bei der einzigen Korrelation zwischen trigeminalen somatosensorischen Zentren und anderen motorischen Arealen, sondern verirrt sich auch in die Amigdaloidei-Prozesse durch eine Korrelation mit dem trigeminalen Hirnstammareal. Die Amygdala wird aus Angst aktiv und spielt eine wichtige Rolle bei der emotionalen Reaktion auf lebensbedrohliche Situationen. Wenn sich Laborratten bedroht fühlen, reagieren sie mit heftigen Beißen. Die Kraft des Bisses wird durch die motorischen Kerne des Trigeminussystems und des Trigeminushirnstamms Me5 reguliert.Das Me5 überträgt propriozeptive Signale von den Kaumuskeln und Parodontalbändern an Trigeminuskerne und Motoren. Projektionen des zentralen Amygdaloidkerns (ACe) senden Verbindungen zum motorischen Trigeminuskern und zur retikulären Prämotorformation und direkt zum Me5. | |||
Um dies zu bestätigen, wurden in einer an Mäusen durchgeführten Studie die Neuronen im zentralen Amigdaloide-Kern (ACe) nach der Injektion eines retrograden Tracers (Fast Blue) im kaudalen Kern des Me5 markiert, was darauf hinweist, dass die Amigdaloiden direkte Projektionen senden zum Me5 und legen nahe, dass die Amygdala die Stärke des Bisses reguliert, indem sie die neuronale Aktivität im Me5 durch eine neurale Fazilitation modifiziert.<ref>{{Cite book | |||
| autore = Shirasu M | | autore = Shirasu M | ||
| autore2 = Takahashi T | | autore2 = Takahashi T | ||
Line 519: | Line 519: | ||
}}</ref> | }}</ref> | ||
Die Änderung der okklusalen Verhältnisse kann die oralen somatosensorischen Funktionen verändern, und die rehabilitativen Behandlungen des Kausystems sollten die somatosensorischen Funktionen wiederherstellen. Es ist jedoch unklar, warum sich einige Patienten nicht an die Kaurestauration gewöhnen und sensomotorische Störungen bestehen bleiben. Auf den ersten Blick scheinen es strukturelle Veränderungen zu sein, nicht nur funktionale. Der primäre motorische Kortex des Gesichts ist an der Erzeugung und Steuerung von Gesichtsgoldbewegungen und sensorischen Eingaben oder veränderten motorischen Funktionen beteiligt, die zu neuroplastischen Veränderungen im kortikalen M1-Bereich führen können.<ref name="MFCF" /><ref>{{Cite book | |||
| autore = Avivi-Arber L | | autore = Avivi-Arber L | ||
| autore2 = Lee JC | | autore2 = Lee JC | ||
Line 539: | Line 539: | ||
}}</ref> | }}</ref> | ||
== | ==Abschließende Überlegungen== | ||
Abschließend wird aus der Prämisse deutlich, dass das Kausystem nicht unbedingt als ein System angesehen werden sollte, das einfach von mechanischen Gesetzen beherrscht wird, sondern als ein "komplexes System" indeterministischer Art, bei dem man das "aufkommende Verhalten" erst danach quantifizieren kann stimulieren und dann die hervorgerufene Reaktion analysieren (Abbildung 2). Das neuronale System kommuniziert auch mit seiner eigenen verschlüsselten Maschinensprache (potenzielle Aktion und Ionenströme) und daher ist es nicht möglich, die vom Patienten angegebenen Symptome durch natürliche Sprache zu interpretieren. | |||
Dieses Konzept vertieft das Wissen über den Gesundheitszustand eines Systems, da es eine Antwort aus dem Inneren des Netzwerks herausholt – oder zumindest aus einem großen Teil davon – indem normale und/oder abnormale Komponenten den verschiedenen Knoten des Netzwerks zugeordnet werden. In wissenschaftlicher Hinsicht führt es auch ein neues Paradigma in das Studium des Kausystems ein: die „Neuro-Gnathologie-Funktion“, die wir zu gegebener Zeit im Kapitel „Außergewöhnliche Wissenschaft“ kennenlernen werden.. | |||
Derzeit erfolgt die Interpretation des Emergent Behaviour of the Kausystem in der Zahnheilkunde nur durch die Analyse der freiwilligen Valley-Reaktion, durch elektromyografische Aufzeichnungen, „EMG-Interferenzmuster“ und radiologische und axografische Tests (Replikatoren von Unterkieferbewegungen).. Diese können nur als beschreibende Tests betrachtet werden. | |||
Das Paradigma der gnathologischen Beschreibungstests stand vor Jahren vor einer Krise: Trotz des Versuchs, die verschiedenen Axiome, Denkschulen und klinisch-experimentellen Strenge im Bereich der Kiefergelenkserkrankungen neu zu ordnen (durch die Umsetzung eines Protokolls namens „Research Diagnostic Criteria“ RDC/TMDs), ist dieses Paradigma noch nicht entstanden wegen der wissenschaftlich-klinischen Unvollständigkeit des Verfahrens selbst akzeptiert. Es verdient jedoch einen besonderen Hinweis auf die RDC/TMD, zumindest für das Engagement der Autoren und gleichzeitig für das Scrollen der Grenzen. | |||
Das RDC/TMD-Protokoll wurde entwickelt und initialisiert, um den Verlust „standardisierter diagnostischer Kriterien“ zu vermeiden und eine diagnostische Standardisierung empirischer Daten zur Verfügung zu stellen. | |||
Dieses Protokoll wurde vom National Institute for Dental Research (NIDR) unterstützt und an der University of Washington und der Group Health Corporative of Puget Sound, Seattle, Washington, durchgeführt. Samuel F. Dworkin, M. von Korff und L. LeResche waren die Hauptermittler<ref>{{Cite book | |||
| autore = Dworkin SF | | autore = Dworkin SF | ||
| autore2 = Huggins KH | | autore2 = Huggins KH | ||
Line 574: | Line 574: | ||
}}</ref>. | }}</ref>. | ||
Um zur Formulierung des Protokolls des „RDC“ zu gelangen, wurde eine Überprüfung der Literatur zu diagnostischen Methoden in der rehabilitativen Zahnheilkunde und TMDs durchgeführt und einer Validierung und Reproduzierbarkeit unterzogen. Taxonomische Systeme wurden von Farrar berücksichtigt (1972)<ref>{{Cite book | |||
| autore = Farrar WB | | autore = Farrar WB | ||
| titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | | titolo = Differentiation of temporomandibular joint dysfunction to simplify treatment | ||
Line 617: | Line 617: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Eversole | }}</ref>, Eversole und Machado (1985)<ref>{{Cite book | ||
| autore = Eversole LR | | autore = Eversole LR | ||
| autore2 = Machado L | | autore2 = Machado L | ||
Line 729: | Line 729: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, Bergamini | }}</ref>, Bergamini und Prayer-Galletti (1990)<ref>{{Cite book | ||
| autore = Prayer Galletti S | | autore = Prayer Galletti S | ||
| autore2 = Colonna MT | | autore2 = Colonna MT | ||
Line 767: | Line 767: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref>, | }}</ref>, und verglichen sie, indem sie sie einem Satz von Bewertungskriterien zuordneten. | ||
Die Bewertungskriterien wurden in zwei Kategorien unterteilt, die methodische Überlegungen und klinische Überlegungen beinhalten. | |||
Das Ende der Forschung kam aufgrund fehlender wissenschaftlicher und klinischer Validierung zur Eliminierung einer Reihe instrumenteller diagnostischer Methoden wie Interferenz-Elektromyographie (EMG-Interferenzmuster), Pantographie, Röntgendiagnostik usw. Diese werden in den nächsten Ausgaben von Masticationpedia ausführlicher beschrieben. Dieses erste Ziel war daher die wissenschaftliche Anfrage nach „objektiven Daten“ und nicht erzeugt durch Meinungen, Denkschulen oder subjektive Bewertungen des Phänomens.. Während des Workshops der International Association for Dental Research (IADR) von 2008 wurden vorläufige Ergebnisse der RDC/TMDs präsentiert, um das Projekt zu validieren. | |||
Die Schlussfolgerung war, dass es für eine Überprüfung und gleichzeitige Validierung von [RDC/TMD] unerlässlich ist, dass die Tests in der Lage sein sollten, eine Differenzialdiagnose zwischen CMD-Patienten mit Schmerzen und Probanden ohne Schmerzen zu stellen und vor allem Patienten zu diskriminieren mit CMD-Schmerzen von Patienten mit orofazialen Schmerzen ohne CMD.<ref>{{Cite book | |||
| autore = Lobbezoo F | | autore = Lobbezoo F | ||
| autore2 = Visscher CM | | autore2 = Visscher CM | ||
Line 792: | Line 792: | ||
}}</ref> | }}</ref> | ||
Dieser letzte Artikel, der Schmerz als ein wesentliches Symptom für die klinische Interpretation neu betrachtet, bringt die gesamte neurophysiologische Phänomenologie ins Spiel, nicht nur diese. | |||
Um sich in diesem Medizinzweig leichter bewegen zu können, bedarf es eines anderen wissenschaftlich-klinischen Ansatzes, der den Kompetenzhorizont in Bereichen wie Bioengineering und Neurobiologie erweitert. | |||
Es ist daher wichtig, die Aufmerksamkeit darauf zu richten, wie man trigeminusförmige elektrophysiologische Signale als Reaktion auf eine Reihe von Auslösern empfängt, die von einem elektrophysiologischen Gerät hervorgerufen werden, Daten verarbeitet und einen organisch-funktionellen Wert des Trigeminus- und Kausystems bestimmt, wie von Marom Bikson und erwartet coll. in ihren «''[[:File:Electrical stimulation of cranial nerves in cognition and disease.pdf|Elektrische Stimulation von Hirnnerven bei Kognition und Krankheit]]''». | |||
Wir sollten an ein System denken, das Kaufunktion und neurophysiologische Funktionen vereint, indem wir einen neuen Begriff einführen: "'''Neuro-gnathologische Funktionen'''"<br>die Gegenstand eines eigenen Kapitels sein wird. | |||
{{Bib}} | {{Bib}} |